学史

阅读 / 问答 / 标签

数学史的意义和价值

与其他知识部门相比,数学是门历史性或者说累积性很强的科学。重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有的理论,而且总是包容原先的理论。人们也常常把现代数学比喻成一株茂密的大树,它包含着并且正在继续生长出越来越多的分支。数学史不仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在更多的情况下是充满忧郁、徘徊,要经历艰难曲折,甚至会面临危机。数学史也是数学家们克服困难和战胜危机的斗争记录。对这种记录的了解可使我们从前人的探索与奋斗中汲取教益,获得鼓舞和增强信心。因此,可以说不了解数学史就不可能全面了解数学科学。

数学史有那几个发展阶段?

1 (前3500-前500)数学起源与早期发展:古埃及数学、美索不达米亚(古巴比伦)数学 2(前600-5世纪)古代希腊数学:论证数学的发端、欧式几何 3(3世纪-14世纪)中世纪的中国数学、印度数学、阿拉伯数学:实用数学的辉煌 4(12世纪-17世纪)近代数学的兴起:代数学的发展、解析几何的诞生 5(14世纪-18世纪)微积分的建立:牛顿与莱布尼茨的微积分建立 6(18世纪-19世纪)分析时代:微积分的各领域应用 7(19世纪)代数的新生:抽象代数产生(近世代数) 8(19世纪)几何学的变革:非欧几何 9(19世纪)分析的严密化:微积分的基础的严密化 10二十世纪的纯粹数学的趋势 11二十一世纪应用数学的天下 以上是按数学发展的脉络进行划分的,不是按时间顺序,时代也都标注了. 如果在简单说就是 1古代数学 希腊的论证数学与中国的实用数学的起源发展 2近代数学 微积分的发现、应用、严密化 3现代数学 对数学的基础的思考 其他的都是这三个大的数学发展脉络的附属品,贯穿数学发展的思想只有2个,就是希腊贵族式的论证数学与中国平民是的实用数学的思想的起源、发展、相互影响.(其中贵族数学是说希腊贵族人研究数学,平民不接触)

介绍有关数学史和数学文化

不知道

急求数学家故事、数学史!!!!!一篇不少于600字,需要五篇

"数学之神"——阿基米德 阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。 后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。 《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。 《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为: <π< ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。 《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。 《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。 丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。 正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。-------------------------------------------------------------数学奇才、计算机之父--冯u2022诺依曼 20世纪即将过去,21世纪就要到来.我们站在世纪之交的大门槛,回顾20世纪科学技术的辉煌发展时,不能不提及20世纪最杰出的数学家之一的冯u2022诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯u2022诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父". 约翰u2022冯u2022诺依曼 ( John Von Nouma,1903-1957),美藉匈牙利人,1903年12月28日生于匈牙利的布达佩斯,父亲是一个银行家,家境富裕,十分注意对孩子的教育.冯u2022诺依曼从小聪颖过人,兴趣广泛,读书过目不忘.据说他6岁时就能用古希腊语同父亲闲谈,一生掌握了七种语言.最擅德语,可在他用德语思考种种设想时,又能以阅读的速度译成英语.他对读过的书籍和论文.能很快一句不差地将内容复述出来,而且若干年之后,仍可如此.1911年一1921年,冯u2022诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯u2022诺依曼还不到18岁.1921年一1923年在苏黎世大学学习.很快又在1926年以优异的成绩获得了布达佩斯大学数学博士学位,此时冯u2022诺依曼年仅22岁.1927年一1929年冯u2022诺依曼相继在柏林大学和汉堡大学担任数学讲师。1930年接受了普林斯顿大学客座教授的职位,西渡美国.1931年成为该校终身教授.1933年转到该校的高级研究所,成为最初六位教授之一,并在那里工作了一生.冯u2022诺依曼是普林斯顿大学、宾夕法尼亚大学、哈佛大学、伊斯坦堡大学、马里兰大学、哥伦比亚大学和慕尼黑高等技术学院等校的荣誉博士.他是美国国家科学院、秘鲁国立自然科学院和意大利国立林且学院等院的院土. 1954年他任美国原子能委员会委员;1951年至1953年任美国数学会主席.1954年夏,冯u2022诺依曼被使现患有癌症,1957年2月8日,在华盛顿去世,终年54岁. 冯u2022诺依曼在数学的诸多领域都进行了开创性工作,并作出了重大贡献.在第二次世界大战前,他主要从事算子理论、鼻子理论、集合论等方面的研究.1923年关于集合论中超限序数的论文,显示了冯u2022诺依曼处理集合论问题所特有的方式和风格.他把集会论加以公理化,他的公理化体系奠定了公理集合论的基础.他从公理出发,用代数方法导出了集合论中许多重要概念、基本运算、重要定理等.特别在 1925年的一篇论文中,冯u2022诺依曼就指出了任何一种公理化系统中都存在着无法判定的命题. 1933年,冯u2022诺依曼解决了希尔伯特第5问题,即证明了局部欧几里得紧群是李群.1934年他又把紧群理论与波尔的殆周期函数理论统一起来.他还对一般拓扑群的结构有深刻的认识,弄清了它的代数结构和拓扑结构与实数是一致的.他对其子代数进行了开创性工作,并莫定了它的理论基础,从而建立了算子代数这门新的数学分支.这个分支在当代的有关数学文献中均称为冯u2022诺依曼代数.这是有限维空间中矩阵代数的自然推广. 冯u2022诺依曼还创立了博奕论这一现代数学的又一重要分支. 1944年发表了奠基性的重要论文《博奕论与经济行为》.论文中包含博奕论的纯粹数学形式的阐述以及对于实际博奕应用的详细说明.文中还包含了诸如统计理论等教学思想.冯u2022诺依曼在格论、连续几何、理论物理、动力学、连续介质力学、气象计算、原子能和经济学等领域都作过重要的工作. 冯u2022诺依曼对人类的最大贡献是对计算机科学、计算机技术和数值分析的开拓性工作.现在一般认为ENIAC机是世界第一台电子计算机,它是由美国科学家研制的,于1946年2月14日在费城开始运行.其实由汤米、费劳尔斯等英国科学家研制的"科洛萨斯"计算机比ENIAC机问世早两年多,于1944年1月10日在布莱奇利园区开始运行.ENIAC机证明电子真空技术可以大大地提高计算技术,不过,ENIAC机本身存在两大缺点:(1)没有存储器;(2)它用布线接板进行控制,甚至要搭接见天,计算速度也就被这一工作抵消了.ENIAC机研制组的莫克利和埃克特显然是感到了这一点,他们也想尽快着手研制另一台计算机,以便改进. 冯u2022诺依曼由ENIAC机研制组的戈尔德斯廷中尉介绍参加ENIAC机研制小组后,便带领这批富有创新精神的年轻科技人员,向着更高的目标进军.1945 年,他们在共同讨论的基础上,发表了一个全新的"存储程序通用电子计算机方案"--EDVAC(Electronic Discrete Variable AutomaticCompUter的缩写).在这过程中,冯u2022诺依曼显示出他雄厚的数理基础知识,充分发挥了他的顾问作用及探索问题和综合分析的能力. EDVAC方案明确奠定了新机器由五个部分组成,包括:运算器、逻辑控制装置、存储器、输入和输出设备,并描述了这五部分的职能和相互关系.EDVAC机还有两个非常重大的改进,即:(1)采用了二进制,不但数据采用二进制,指令也采用二进制;(2建立了存储程序,指令和数据便可一起放在存储器里,并作同样处理.简化了计算机的结构,大大提高了计算机的速度. 1946年7,8月间,冯u2022诺依曼和戈尔德斯廷、勃克斯在EDVAC方案的基础上,为普林斯顿大学高级研究所研制IAS计算机时,又提出了一个更加完善的设计报告《电子计算机逻辑设计初探》.以上两份既有理论又有具体设计的文件,首次在全世界掀起了一股"计算机热",它们的综合设计思想,便是著名的"冯u2022 诺依曼机",其中心就是有存储程序原则--指令和数据一起存储.这个概念被誉为"计算机发展史上的一个里程碑".它标志着电子计算机时代的真正开始,指导着以后的计算机设计.自然一切事物总是在发展着的,随着科学技术的进步,今天人们又认识到"冯u2022诺依曼机"的不足,它妨碍着计算机速度的进一步提高,而提出了"非冯u2022诺依曼机"的设想. 冯u2022诺依曼还积极参与了推广应用计算机的工作,对如何编制程序及搞数值计算都作出了杰出的贡献.冯u2022诺依曼于1937年获美国数学会的波策奖;1947年获美国总统的功勋奖章、美国海军优秀公民服务奖;1956年获美国总统的自由奖章和爱因斯坦纪念奖以及费米奖. 冯u2022诺依曼逝世后,未完成的手稿于1958年以《计算机与人脑》为名出版.他的主要著作收集在六卷《冯u2022诺依曼全集》中,1961年出版. -------------------------------------------------------------------------------------第一位数学女博士徐瑞云 徐瑞云,1915年6月15日生于上海,1927年2月考入上海著名的公立务本女中读书。徐瑞云从小喜欢数学,读中学时对数学的兴趣更加浓厚,因此,1932年9月高中毕业后报考了浙江大学数学系。当时,浙大数学系的教授有朱叔麟、钱宝琮、陈建功和苏步青。此外,还有几位讲师、助教。数学系的课程主要由陈建功和苏步青担任。当时数学系的学生很少,前一届两个班学生共五人,她这届也不过十几人。 当时苏步青才30岁,看上去十分年轻,因此徐瑞云的同学中有人认为苏步青是助教,可是听完一堂课后就不住地赞叹说:“想不到助教竟能讲得这么好。”这件事引起知情者的哄笑。徐瑞云在陈建功和苏步青的教导下,勤奋学习,专心听讲,认真做笔记,她的考试成绩经常是满分。1936年7月,徐瑞云以优异成绩毕业了,被浙大数学系留校任助教。1937年2月,26岁的徐瑞云与28岁的生物系助教江希明喜结伉俪。新婚三个月后,徐瑞云夫妇获得亨伯特留学德国的奖学金,双双乘船漂洋赴德国留学,攻读博士学位。 徐瑞云有幸被德国著名的数学大师卡拉凯屋独利接受,由他担任她的数学博士指导老师。当时有不少学生想请他作导师,他都没有同意。而徐瑞云这位东方女士因学习勤奋,数学功底扎实,成了卡拉凯屋独利的关门弟子。徐瑞云主要研究三角级数论。这门学科起源于物理学的热传导问题的傅里叶分析的主要部分,是当时国际上研究的热门之一,在中国还是一个空白。 徐瑞云为将来能在分析、函数论方面赶上世界先进水平,废寝忘食,广撷博采,把大部分时间都用在图书馆里。1940年底,徐瑞云获得博士学位,成了中国历史上第一位女数学博士。她的博士论文“关于勒贝格分解中奇异函数的傅里叶展开”,1941年发表在德国《数学时报》上。 完成学业的徐瑞云夫妇,随即离德回国,于1941年4月回到母校,双双被聘为副教授,正式登上在战火硝烟的大后方培养人才的讲台。在艰苦的条件下,陈建功和苏步青没有中断在杭州时共创的函数论和微分几何两个数学讨论班,这是一种教学相长、遴选英彦的科研形式,徐瑞云也参与其间。1944年11月,英国驻华科学考察团团长李约瑟参观了浙大数学系和理学院,连声称赞道:“你们这里是东方的剑桥!”这更加激励了徐瑞云的勤奋工作。她这时教的学生曹锡华、叶彦谦、金福临、赵民义、孙以丰、杨宗道等,后来都成了杰出的数学家和数学教育家。1946年,31岁的徐瑞云提升为正教授。 1952年,徐瑞云调入浙江师院,被任命为数学系主任,从此全身投入了艰苦的创建数学系的工作中。在她的领导下,没有几年功夫,数学系已初具规模,教学质量不断提高。第一届本科毕业生约有三分之一考取了研究生。他们系也成为全国同行的楷模,进入全国同行前列。徐瑞云在建设数学系的同时,没有忘记科学研究。她翻译了苏联那汤松的名著《实变函数论》。译本于1955年由高等教育出版社出版。 -----------------------------------------------------------------------达朗贝尔(Jean Le Rond d"Alembert,1717-1783)——法国著名的物理学家、数学家和天文学家,一生研究了大量课题,完成了涉及多个科学领域的论文和专著,其中最著名的有8卷巨著《数学手册》、力学专著《动力学》、23卷的《文集》、《百科全书》的序言等等。他的很多研究成果记载于《宇宙体系的几个要点研究》中。达朗贝尔生前为人类的进步与文明做出了巨大的贡献,也得到了许多荣誉。但在他临终时,却因教会的阻挠没有举行任何形式的葬礼。 达朗贝尔是一个军官的私生子,母亲是一位著名的沙龙女主人。达朗贝尔出生后,他的母亲为了不影响自己的名誉,把刚出生的儿子遗弃在教堂的石阶上,后被一名士兵捡到。达朗贝尔的亲生父亲得知这一消息后,把他找回来寄养给了一对工匠夫妇。 达朗贝尔少年时被父亲送到了一所教会学校,在那里他学习了很多数理知识,为他将来的科学研究打下了坚实的基础。难能可贵的是,在宗教学校里受到了许多神学思想的熏陶以后,达朗贝尔仍然坚信真理、一生探求科学的真谛、不盲从于宗教的认识论。后来他自学了一些科学家的著作,并且完成了一些学术论文。1741 年,凭借自己的努力,达朗贝尔进入了法国科学院担任天文学助理院士,在以后的两年里,他对力学作了大量研究,并发表了多篇论文和多部著作。1746年,达朗贝尔被提升为数学副院士。1750年以后,他停止了自己的科学研究,投身到了具有里程碑性质的法国启蒙运动中去。他参与了百科全书的编辑和出版,是法国百科全书派的主要首领。在百科全书的序言中,达朗贝尔表达了自己坚持唯物主义观点、正确分析科学问题的思想。在这一段时间之内,达朗贝尔还在心理学、哲学、音乐、法学和宗教文学等方面都发表了一些作品。 1760年以后,达朗贝尔继续进行他的科学研究。随着研究成果的不断涌现,达朗贝尔的声誉也不断提高。他尤其以写论文快速而闻名。1762年,俄国沙皇邀请达朗贝尔担任太子监护,但被他谢绝了;1764年,普鲁士国王邀请他到王宫住了三个月,并邀请他担任普鲁士科学院院长,也被他谢绝了。1754年,他被提升为法国科学院的终身秘书。欧洲很多国家的科学院都聘请他担任国外院士。 达朗贝尔的日常生活非常简单,白天工作,晚上去沙龙活动。他终生未婚,但有一位患难与共、生死相依的情人——沙龙女主人勒皮纳斯。达朗贝尔与养父母感情一直很好,直到1765年他47岁时才因病离开养父母,住到了勒皮纳斯家里。病愈后他一直居住在她的家里。可是在以后的日子里他在事业上进展缓慢,更使他悲痛欲绝的是勒皮纳斯小姐于1776年去世了。在绝望中他度过了自己的晚年。 由于达朗贝尔生前反对宗教,巴黎市政府拒绝为他举行葬礼。所以当这位科学巨匠离开这个世界的时候,即没有隆重的葬礼、也没有缅怀的追悼,只有他一个人被安静的埋葬在巴黎市郊的墓地里。 数学是达朗贝尔研究的主要课题,他是数学分析的主要开拓者。达朗贝尔为极限作了较好的定义,但他没有把这种表达公式化。波义尔做出这样的评价:达朗贝尔没有逃脱传统的几何方法的影响,不可能把极限用严格形式阐述;但他是当时几乎唯一一位把微分看成是函数极限的数学家。-----------------------------------------------------------------------“我们的希望是在21世纪看见中国成为数学大国。”——陈省身 2004年12月3日,国际数学大师、中科院外籍院士陈省身,在天津病逝。享年93岁。陈省身,1911年10月26日生于浙江嘉兴。少年时就喜爱数学,觉得数学既有趣又较容易,并且喜欢独立思考,自主发展,常常“自己主动去看书,不是老师指定什么参考书才去看”。陈省身1927年进入南开大学数学系,该系的姜立夫教授对陈省身影响很大。在南开大学学习期间,他还为姜立夫当助教。1930年毕业于南开大学,1931年考入清华大学研究院,成为中国国内最早的数学研究生之一。在孙光远博士指导下,发表了第—篇研究论文,内容是关于射影微分几何的。1932年4月应邀来华讲学的汉堡大学教授布拉希克对陈省身影响也不小,使他确定了以微分几何为以后的研究方向。1934年,他毕业于清华大学研究院,同年,得到汉堡大学的奖学金,赴布拉希克所在的汉堡大学数学系留学。在布拉希克研究室他完成了博士论文,研究的是嘉当方法在微分几何中的应用。1936年获得博土学位。从汉堡大学毕业之后,他来到巴黎。 1936年至1937年间在法国几何学大师E.嘉当那里从事研究。E.嘉当每两个星期约陈省身去他家里谈一次,每次一小时。“听君一席话,胜读十年书。” 大师面对面的指导,使陈省身学到了老师的数学语言及思维方式,终身受益。陈省身数十年后回忆这段紧张而愉快的时光时说,“年轻人做学问应该去找这方面最好的人”。 陈省身先后担任我国西南联大教授,美国普林斯顿高等研究所研究员,芝加哥大学、伯克利加州大学终身教授等,是美国国家数学研究所、南开大学数学研究所的创始所长。陈省身的数学工作范围极广,包括微分几何、拓扑学、微分方程、代数、几何、李群和几何学等多方面。他是创立现代微分几何学的大师。早在 40年代,他结合微分几何与拓扑学的方法,完成了黎曼流形的高斯—博内一般形式和埃尔米特流形的示性类论。他首次应用纤维丛概念于微分几何的研究,引进了后来通称的陈氏示性类。为大范围微分几何提供了不可缺少的工具。他引近的一些概念、方法和工具,已远远超过微分几何与拓扑学的范围,成为整个现代数学中的重要组成部分。陈省身还是一位杰出的教育家,他培养了大批优秀的博士生。

新时期文学史上具有划时代意义的小说:新星txt全集下载

邮箱在哪

问几道中国当代文学史的简答题:一、新时期十年小说思潮的发展历程二、试论古华《芙蓉镇》的艺术特征

从鸦片战争开始的。与明清易代相比,鸦片战争的炮声是 更大的一次震动。鸦片战争带来千古未有之变局,从此中国由封建社会沦为半封 建半殖民地社会。西方文化开始涌入中国这片古老的土地,而中国许多有识之士 在向西方寻求新的富国强兵之路的同时,也寻求到新的文学灵感,成为一代新的 作家,龚自珍、黄遵宪、梁启超便是这批新人的代表。与社会的变化相适应,文 学创作也发生了变化。救亡图存的意识和求新变于异邦的观念,成为文学的基调。 文学观念也发生了变化,文学被视为社会改良的工具,在国民中最易产生影响的 小说的地位得到充分肯定。随着外国翻译作品的逐渐增多,文学的叙事技巧更新 了。报刊这种新的媒体出现了,一批新的报人兼而具有作家的身份,他们以报刊 传播其作品,写作方法也因适应报刊这种形式的需要而有所变化。在古文领域内 出现了通俗化的报刊文体,在诗歌领域里提出了“我手写我口”这样的口号。 近古期的终结,也就是中国古代文学的终结,我们仍然划定在“五四”运动 爆发的1919年。这是因为“五四”作为一次新文化运动,不仅在社会史上开 启了一个新的时期,也在文学史上开启了一个新的时期。在“五四”运动之前虽 然出现了一些带有新思想与新风格的作家,但那仍然属于古典文学的范畴。“五 四”运动中涌现出来的那批作家才有了质的变化。我们既注意19世纪末以来文 坛发生的渐变,更注重“五四”这个大的开阖。“五四”阖上了中国数千年古典 文学的门,同时打开了文学的一片崭新天地。 ;古华《芙蓉镇》的艺术特征将道德批判与历史批判融为一体,以人物命运的变迁传达出深广的社会内涵,揭示了极左路线给人民造成的灾难,富于人道主义精神。影片继承和发扬了我国现实主义电影的优良传统,取得了雅俗共赏的社会效果。

穆旦的诗歌在文学史上有哪些意义?

穆旦是一位思想艺术都达到相当高度的中国现代诗人。他一生坎坷,但是诗是他人生的火炬。《我看》这首诗应该是穆旦在昆明西南联大的大学时代所写。其中充沛的激情、博大的胸怀,是他青春时代的色彩。20岁,是人生的春天。题目为“我看”。春天的傍晚,在瑰丽大自然面前。诗人激情澎湃。前两节是“我所看”,后面三节是“我所思”。看什么?大自然的美。思什么?人生的意义。诗人的目光是充满激情的,捕捉到的意象大气而深远。第一节写风,傍晚的春风,揉过丰润的草地,“揉”用的妙。写出了风的力度和温柔。青草低首又低首,这是春风与青草的互动。诗人把常见的风景写得十分生动,饱含情感。最后一句写了从面前的起伏的草地想到了更远方的广阔的大地。第二节是写天空,晚霞与鸟的呼应。“吸入”是关键词。应该是被吸进去。平展翅翼的静鸟好像与天空融为一体。晚霞沉醉了大地,不说“染红了”,而说“沉醉了”大地。真是高明的表达。看,仅仅是在看吗?不。真正的诗人不会只用眼睛。还会用触觉嗅觉,调动全部感官。当他写风的时候自己已经化身为风,抚摸起伏的青草。他也是鸟,在天空静止,溶入。他也是云,让大地沉醉的流云。在大地和天空的壮丽广阔的背景下,诗人开始抒怀,也开始思索。(我以为读诗的时候,尤其是诗人笔下的大自然,只需要陶醉在诗人的意境中。不必逐字逐句探究象征着什么。那样只会破坏意境。)年轻的诗人面对瑰丽的大自然,在春风晚霞中想到了什么呢?读者可以猜。我觉得是时间和生命。人的一生转瞬即逝,我们的欢乐忧伤,与大自然的生生不息的生命力相比,多么微不足道。第四节是向远古的哲人致敬,但是他们的咏叹再怎么伟大,在大自然面前仍然是一缕静流。这里让我想到“子在川上曰,逝者如斯夫”。最后一节。尽管人的生命在大自然面前渺小无比,我们还是要活出精彩。要飞奔吧,要漫游吧,要如鸟、如云、如树,活得自由自在。最后三句达到高潮,点出主旨:“让我的呼吸与自然合流!”与大自然拥抱在一起,欢笑与哀愁都是生命的一部分,也如同花朵一样开了又谢。年轻人往往为赋新诗强说愁。把个人的欢乐忧伤看得天大无比。20岁的诗人穆旦却已经发现,在大自然面前,人生的意义需要重新思考。激情与理性的融合,正是他的诗保持一生的底色。有激情有思考,有大胸怀大境界。这是青年诗人通过诗歌传递出来的。不久,他参加远征军为抗战九死一生就是明证。他经历过政治运动的折磨,又是一个九死一生。但他仍一直写诗,当不知不觉中人生的冬天来临时,他写得更加炉火纯青。诗伴随了他的一生。他真正做到了诗与生命同在。

山东高考物理学史。全部的

开学后老师会给你们印

物理选修3-1物理学史 谈在物理教学中引入物理学史的体会

  古人云“史能明志”,常看历史会给人增加思考的欲望,会寻那历史的轨迹去思索一些现在的社会现象,也同时会给人许多的启示,物理学史集中体现了人类探索和逐步认识物理世界的现象、特性、规律和本质的历程,任何一个具体的物理知识和理论体系都是汇集许多人的研究成果而建立起来的,常常是几十年、甚至上百年的努力才能迈出有意义的一步,它包含着认识论和方法论的因素,包含着探索者的艰辛与悲欢,又体现着认识过程中理论与实践、继承与突破、理性与非理性的辨证统一,因而也包含着丰富的“教书育人”的教育因素,因此,在高中物理教学中引入物理学史教育具有非常重要的意义。   1有助于激发学生学习物理的兴趣   培养良好的学习习惯,树立勇于探索的献身精神,只有当学生对学习有了兴趣,才能表现出学习的自觉性、主动性,才能在学习中发扬开拓和探索精神,以顽强毅力去克服学习中遇到的困难,这就要求我们在教学中,不仅要把日常生活、生产劳动中发生的现象、问题与教材紧密联系起来,使学生认识到学习的现实意义,还须把历史引入教学中,把科学理论的建立,科学发现的过程,科技发明对人类社会发展的贡献用生动事例展示给学生,并通过了解物理学家的生平、各学派间的争端以及尚未解开的物理课题来激发学生学习物理的兴趣,让学生从中学习到物理学家严谨的科学态度和科学的思维方法,不断提高自身科学素质、养成良好的学习习惯,变被动学习为主动获取知识,例如,我在高一第一课教学时给学生看在物理学发展史上的一些重大的发现,及所经历的时间:   焦耳测定热功当量精确值:38年   相对论:15年   从预言受激辐射到激光诞生:44年   从发现超导现象到BCS超导理论:46余年   从玻色——爱因斯坦凝聚理论到实验证明:70余年   超弦理论:70余年   受控热核聚变:100年?   从这些数字中学生可以懂得只有具有踏踏实实,百折不挠的精神的人才能成功,而我们平时学习上遇到的一些挫折已不足为奇,从而树立顽强的学习信念,敢于面对学习中的困难,再如:在讲《牛顿运动定律》时,以专题讲座的形式,价绍牛顿的生平及其科学研究历程,从而消除了科学研究的神秘感,拉近了科学家与学生的距离,激励他们把对科学家的崇拜转化为刻苦学习的动力。   同时,通过对物理学史的回顾,使学生消除对已有物弼知识来源的神秘感,了解科学技术发展的过程,懂得任何一个定律的发现和理论的建立既与社会生产力密切相关也受到物理学发展内在规律的制约,任何一部分物理知识的获得都离不开实验,可靠的、精确的、可重复的实验是物理学中决定一切的基础,因此,了解物理学史可提高人们进行科学创造的自信心和自觉性,这对于培养学生实事求是的科学态度和创造力有着十分重要的意义,同时,物理学史中有许多科学家为真理献身的动人事迹,如伽利略为宣传哥白尼的日心说而被教会终身监禁,利赫曼为引雷电而捐躯,居里夫人为研制放射性而作出了巨大的牺牲,法拉第舍弃荣华富贵,几次拒绝接受封爵而甘“平民法拉第”,亚里士多德富有批判和怀疑精神等,这些科学家不畏艰险,不惜生命,不慕利禄,不怕权威,追求真理的高尚品质,有利于培养学生实事求是的科学态度、献身科学的探索精神,为以后的学习和研究打下良好的基础。   2有助于对物理知识的理解和把握   根据教材编排特点,分单元讲解、分析发展史不仅有助于学生了解各概念、定理、定律的来龙去脉和科学知识的运动过程,而且有助于学生按固有的形式和体系来理解和把握物理知识,从而逐步掌握正确的科学思维方法,例如,在讲到力的概念时,从古希腊的亚里士多德,到伽利略、牛顿,循着伟人的研究历程,从而加深学生对力的概念的理解,在讲高二年级“电磁感应”的时候,以奥斯特发现电流的磁效应为线索,向学生介绍人类对磁及电和磁关系的认识过程,通过讲解安培、法拉弟、愣次和麦克斯韦等人在揭示电磁关系工作中的艰辛努力和所取得的成果,使学生在有了对电磁发展总体认识的基础上,加深对教材的理解和对左、右手定则、法拉弟电磁感应、愣次定律等关键点的把握。   3有助于对学生进行爱国主义教育有助于学生树立辩证唯物主义观点   我国是世界四大文明古国之一,在物理学的理论和实践有着辉煌的成就,例如,在理论著作方面,《墨经》中对力学、光学的论述;《天工开物》中关于简单机械的记述;《梦溪笔谈》对磁学的论述,《论衡》中关于简单电现象的记述;《考工记》中关于工程技术,声音传播的记载等在当时都是遥遥领先于世界各国,就是在今天仍有参考价值,在实用技术方法,更是举不胜举,指南针、地球仪、浑天仪、船闸、石拱桥、葛洲坝水利工程、火箭等,都是我国最早发明的,教学中结合教材内容,介绍我国在物理学方面对世界的杰出贡献,可以使学生了解祖国古代灿烂文化,激发他们的民族自尊心和自豪感。   物理学发展的历史表明:物理学的发展与人类哲学理论的发展有着极为特殊的密切关系,中学物理教学内容中,概念、定理、定律充满了辩证唯物主义内容,在教学中,有意识地用辩证唯物主义观点去分析物理学发展历史,阐明概念、规律,结合物理学特点,进行物质第一性、物质的运动性和对立统一、量变与质变、否定之否定规律的教育,可以使学生从中领会其中所包含的辩证唯物主义观点,例如介绍爱因斯坦的相对论时,我们就可以把“新生事物不可战胜”这一哲学观点渗透进去,讲到万有引力定律时可将“物质是普遍联系的”这一哲学观点渗透进去。   教学实践告诉我们,不仅要教给学生现代科技所必需的系统的物理知识,还应教给学生科学的学习和研究方法,科学既是一种人类的知识体系又是人类认识世界的一种方式和探索过程,而通常的科学方法都贯穿在物理学发展的过程中,物理学具有很强的继承性,许多科学家就是从对本学科的历史研究中,开始自己的创造活动的,牛顿说过:“如果说我比别人看的远一点,那是因为我站在巨人的肩上”,不仅牛顿如此,凡是作出重大贡献的物理学家都是善于批判和继承的,学习物理学史有助于活跃思维,增强胆识,使学生更自觉地继承前人的事业,有效地进行学习研究,在实施新教材教学的今天,过程与方法,情感、态度与价值观引入了教学的三维目标,纳入新的课程体系,通过物理学史进行科学方法教育变得尤为重要。   所以,在高中物理的教学中,有意思的、有目的的渗透物理学史,是完全必要的,也是切实可行的。

在物理概念教学中,物理学史可以发挥什么作用

利用物理学史的丰富材料,可以对学生进行科学理想教育,激励学生的科学创造精神。物理教学的基本任务除了向学生传授物理基本知识和基本技能外,还应发展学生的认识能力,培养学生的科学理想和科学创造精神。

如何发挥物理学史的人文教育功能

一、物理学史对学生辩证唯物主义世界观的教育   标志着严格意义上的科学诞生的经典物理,是在冲破了宗教神学的桎梏,并以西方文化的逻辑化传统和实验验证思想取代了纯粹的思辨之后才建立起来的。从此以后在物理科学的每一次重大发展,总是与人类的思想观念相互作用、相互影响、紧密地联系在一起。这就使物理科学理论不可避免的体现某种自然观、社会观、科学精神和人文精神。   案例:光的本质   波粒二象性理论及其发展史就是培养学生辩证思想的极生动的素材。千百年来人类探索光的本性,到十七世纪形成了微粒说和波动说这两种对立的学说。由于具有崇高威望的牛顿支持微粒说,加上波动说本身的不完善和找不到强有力的实验依据,使以后的一百多年时间里一直由微粒说占据统治地位。直到杨氏双缝干涉实验的成功;惠更斯波动理论的建立,法拉第发现偏振光的振动而在磁场中发现旋转而揭示了光和电的内在联系;麦克斯韦建立电磁理论提出光的电磁说,赫兹用实验证实了电磁波的存在,把光的波动说发展到空前完善的地步,光的微粒说被逼进了死路。   恰恰是在把光的波动说推向顶峰的赫兹实验中,意外地发现了光电效应现象。进一步研究发现,波动说在光电效应规律中遇到了无法逾越的障碍。微粒说又抬头了,事物走向了反面。这时,爱因斯坦运用普朗克的原始的量子理论提出了光子说,解释了光电效应规律,并进一步科学地把光的微粒说和波动说归纳总结为对立统一的波粒二象性。   波粒二象性理论的发展过程是一个辩证的否定过程。光的波粒二象性同时对微粒说和波动说作了辩证的否定。它肯定了光有波动性和粒子性,又否定了波动性和粒子性的根本对立,波粒二象性理论正是在辩证的否定中得到了发展,其中有量的积累,有质的转变,旧理论的危机又孕育着新理论的诞生,科学不断发展到新的高度。   二、物理学史对学生科学精神的培养   在物理科学的发展过程中,科学内部存在着自我发展的推动力,这种推动力正是人类在科学活动中所形成的科学精神、科学态度、科学道德和科学思想的集中表现。物理科学中包含着丰富的科学品质培养因素,而且可以经过物理课程内化到受教育者身心之中。   案例:听“对话”,理解伽利略的逻辑推理   伽利略在1632年发表的名著《关于力学及局部运动两门新科学的交谈及实验验证》,通常被称为《两种新科学的对话》。这本专著不仅宣告中世纪的力学理论,也宣告支持这种理论的整个亚里士多德的宇宙论体系开始瓦解。书中的辛普利邱代表亚里士多德的观点,萨尔维阿蒂代表伽利略的观点,沙格列陀是一个不怀成见,心胸开阔,热衷于追求知识的人。首先请学生从亚里士多德的“重物先落地”的假设,用逻辑推理方法,试着得出否定的结论,然后利用多媒体,让学生听一听这三个人的对话并着重讨论下面几段:   萨: ……那么我们取一块大石头,例如它的速率是八和一块小石头,下落速率是四,将它们拴在一起,整个系统的下落速率应小于八。但是两块石头拴在一起要比以前的那个速率为八的石头大。因此,重物比轻物的运动速率要小一些,……。这样,你就看到了从你的重物较轻物下落得快的假设,我是怎样推出重物下落得更慢。   这里,萨尔维阿蒂证明了亚里士多德的落体理论自相矛盾。但是,辛普利邱却认为他亲眼看到的重物下落得比轻物快一些。   辛: 你的议论的确信令人钦佩,但是我仍不能相信鸟枪子弹和大炮炮弹下落一样快。   萨: 亚里士多德说:“一个100磅的铁球从100库比特高度落到地面时,1磅的铁球只落了1库比特。”而我说它们是同时落地。你做实验得出大球比小球落地时领先了两指宽。你不应该借口这两指宽的误差而宣扬亚里士多德的99库比特,也不应该只提我的这两指宽的误差,而对他那样大的误差缄默不言。   伽利略在这里很清楚地阐述了一个重要原理:即使是仔细地观察通常发生的自然事件,观察者也可能把注意力分散到一些实际是次要的现象上,从而让十分重要的规律性的东西从眼前滑过去了。伽利略认为这些物体落到地面的时间稍有不同,是由于空气阻力对大小不同,重量不同的物体的影响不同。懂得忽略什么和懂得考虑什么,在科学发展中几乎是同等重要的。对落体运动,伽利略的解释就是基于假定不存在空气阻力。   三、物理学史对学生科学价值观的教育   物理科学的形成和发展,荡涤着腐朽的宗教神学和落后的封建迷信思想,特别是由它引起的一次次工业革命显示着科学的巨大力量,使科学的观念日益深入人心,使科学成为人类认识自然、社会和思维的武器,然而以物理科学为代表的自然科学的发展并不全都如此美好。当人们看到极端功利的使用科学技术给人类生存环境造成种种危害时,不得不重新审视对科学技术的价值的认识。在物理文化日益深入到社会生产和生活领域时,人们逐渐认识了物理科学发展的两面性,并由此开始规范自己的物理科学活动和行为,树立正确科学价值观的同时也是学生形成人文关怀的过程。   许多科学家的一生致力于科研活动的同时,都表现出对人的价值和人的理想的极大重视,对人文精神的执著追求。处处重视人的价值,孜孜不倦地追求社会的和谐发展,是科学精神和人文精神结合的楷模。爱因斯坦在第二次世界大战期间,从人类的正义感出发,劝说美国总统罗斯福,抢在纳粹德国前研制出原子弹;当研制成功以后,他又从人类的良知和社会责任感出发,和原子弹之父奥本海默一起,联合反对使用原子弹,积极地从事阻止核战争的各项努力。事实上,爱因斯坦一生都在致力于和平事业。还有一些科学家苦苦寻求人生的理想,追求人生最高价值的实现,甚至不惜以牺牲自己的生命为代价。如布鲁诺为了坚持“日心说”,在罗马监狱被关押八年,并被宗教裁判所判处了最严厉的处罚——火刑。在临死前,只要亲吻伸到他唇边的十字架便可得救。但是他以他的生命捍卫了科学的真理,同时也实现了人生的最高价值。

快高考了,物理学史请大家帮我缕缕,法拉第,安培,奥斯特都干啥了,电磁感应这块

说实话,高考中对物理学史的考察非常简单,仅限于教材提及的少量内容。高考中喜欢将法拉第,安培,奥斯特这三个人做的贡献打乱后考察学生对电磁学史的掌握程度。其实三人对电磁学的贡献并不难记。下面我按照时间顺序总结一下这三人都干了啥(高中教材内容)。奥斯特:1820年4月发现电流的磁效应(电生磁),并于同年7月正式向学术界宣告了这一发现。安培:在奥斯特发现电流的磁效应后,安培马上进行了大量研究,几个星期之后便提出了安培定则(就是右手螺旋定则),1821年又提出分子电流假说以解释磁现象。法拉第:奥斯特发现电流的磁效应后,法拉第受到启发:既然电能生磁,那么磁为什么不能生电呢?于是法拉第从此便开始了对磁生电长达10年的探寻。终于于1831年发现了电磁感应现象(磁生电),随后又通过实验提出了电磁感应定律。他也是发电机的发明者(因为发电机以电磁感应定律为原理)。以上就是三人在高中教材中的主要贡献(实际上远远不只),只要记住了奥斯特是电生磁的发现者,其他的就简单了。安培有安培定则可以用来帮助记忆,至于法拉第,我想你一辈子也不会忘记他做了什么(该死的感应电动势公式)

物理选修二到一。所有物理学史。整理

必修部分:(必修1、必修2 )一、力学:1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。8、17世纪,德国天文学家开普勒提出开普勒三大定律;9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。9、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。10、1957年10月,苏联发射第一颗人造地球卫星;1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。11、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。12、17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星。选修部分:(选修3-1、3-2、3-3、3-4、3-5)二、电磁学:(选修3-1、3-2)13、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。14、1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。16、1913年,美国物理学家密立根通过油滴实验精确测 定了元电荷e电荷量,获得诺贝尔奖。17、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。18、1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。

所有高中物理学史的总结

问题:所有高中物理学史的总结解答:物理学的发展分为三个阶段,即亚里士多德物理学、牛顿物理学和后牛顿物理学(近代物理学)亚里士多德物理学的特点是目的性以及等级观(天界与地球的截然不同)。中世纪基督教哲学发现“古希腊物理学和天文学与它非常意气相投。地心宇宙、由可腐坏的元素构成的地球、由可腐坏的和易朽的元素构成的人类、万物的自然安息位置、由处于永恒的天体运动中的不朽的以太构成的完美天国——所有这一切都与教会神学配合得很好”。由中世纪基督教、古希腊人的地心天文学和亚里士多德物理学结合形成的前牛顿世界观的核心是目的概念和等级观。人类整体、地球、行星和每一种自然现象都有目的。“每样东西在地位和目的的层级中都有它的自然位置。这种宇宙论与这个时代的等级社会结构非常协调。” 到了16世纪,随着文艺复兴的大潮,哥白尼把太阳而不是地球放在宇宙的中心;开普勒用椭圆轨道取代了行星的“自然的”圆轨道;笛卡儿宣称只有一种自然运动,即惯性运动,在天上和地上都是如此;伽利略提出加速度概念,建立了落体运动定律,并且倡导理论和实验结合的科学方法。站在这些巨人的肩膀上,牛顿提出了运动定律及万有引力定律,并发明了微积分,建立了牛顿力学,得到了极大的成功。根据惯性定律,物体运动并不是因为它们有什么目的,而仅仅是由于没有什么东西使它们停止。目的性让位于因果性。自然位置的上下层级、地球地位特殊的观念、人类的中心地位,这一切都被一扫而光。在结合古希腊的朴素原子唯物论的基础上,形成了牛顿世界观。它把宇宙看成一只巨大的钟表,其工作原理是自然法则,其零件是原子。虽然牛顿的贡献主要在于力学,但上述这种世界观在牛顿去世后整个18世纪乃至19世纪中叶一直影响到物理学的各个部门,形成了牛顿物理学,其世界观的四个特点是原子论(但自然的属性则是连续的)、自然的客观性、可预言性和可分析性。对宇宙的了解决定了宗教、社会秩序和政治,它确立了人类平等和天赋人权的概念,只有普遍的自然法则(而不是某个特定的人或宗教信仰)才是人类行为的终极限制。 麦克斯韦的电磁场理论开始突破了由粒子和力构成的牛顿物理学。20世纪里,在高速、微观和宇观领域里发展起来的相对论和量子论,更形成了后牛顿物理学,揭示了一个由场和能量构成的宇宙。后牛顿物理学完全违背牛顿世界观,它的特点是观察者的参与和量子论中自然界行为的不连续性和不可预测性,互补性代替了严格的因果描述。作者指出,“从科学观点看,从牛顿物理学过渡到后牛顿物理学并没有从亚里士多德物理学过渡到牛顿物理学那么激进。牛顿物理学完全否定了亚里士多德物理学,而后牛顿物理学仅仅限制了牛顿物理学适用的范围。”但是“从哲学观点看,从牛顿物理学到后牛顿物理学的过渡是革命性的,而且这个革命今天仍在继续。”(这和强调机遇的市场经济观念、后现代主义以及系统性、复杂性等概念或思潮也相当合拍。)当然,后牛顿的世界观仍在建立之中,现在还看不出从所有这些将涌现出一种什么样的世界观。“在哥白尼于1543年去世后,毕竟过了一个多世纪欧洲才开始吸取后中世纪科学的文化冲击。牛顿发现万有引力  伊萨克·牛顿,是17世纪人类最伟大的科学家,他是人类历史上屈指可数的几个科学巨人之一。他在物理学、数学和天文学方面的贡献,都是划时代的。  1642年12月25日,牛顿出生在英国一个叫乌尔斯索普的小村子里,刚出生时极度衰弱,几乎夭折。牛顿自幼丧父,与母相依为命。1661年,他进入剑桥大学的三一学院学习。  1665至1667年间,牛顿已在思考引力的问题。一天傍晚,他坐在苹果树下乘凉,一个苹果从树上掉了下来。他忽然想到:为什么苹果只向地面落,而不向天上飞呢?他分析了哥白尼的日心说和开普勒的三定律,进而思考:行星为何绕着太阳而不脱离?行星速度为何距太阳近就快,远就慢?离太阳越远的行星,为何运行周期就越长?牛顿认为它们的根本原因是太阳具有巨大无比的吸引力。  经过一系列的实验、观测和演算,牛顿发现太阳的引力与它巨大的质量密切相关。牛顿进而揭示了宇宙的普遍规律:凡物体都有吸引力;质量越大,吸引力也越大;间距越大,吸引力就越小。这就是经典力学中著名的“万有引力定律”。  根据牛顿的发现,可测定太阳和行星的质量,确定计算慧星轨道的法则,说明月亮和太阳的引力造成地球上的海洋潮汐现象,并推导出克服地球引力、飞向太阳系和飞出太阳系所需的最低速度,它们分别为每秒7.9千米、11.2千米和16.6千米,并依次命名为第一、第二和第三宇宙速度。牛顿不但验证了前辈们的成果,而且为未来空间运载工具的最低推力或速度下限值,提供了精确而权威的科学依据。  牛顿将其一生的成就写在《自然哲学与数学原理》一书中。他发现了物体运动的三大定律,创立了微积分数学。他后来在谈到自己所取得的成就时说:“如果我比其他人看得远些,那是因为我站在巨人的肩膀上。”1727年3月20日凌晨,牛顿于久病不医中去世。据说在生命即将停止的时候,他的心情是坦荡而平静的。英国诗人波普为他写的碑铭说:“自然和自然的规律,都藏在黑暗的夜间;人帝说‘让牛顿降生",使一切变得灿烂光明。”高中物理发展史牛顿  万有引力 卡文迪许   用扭秤实验测定万有引力常数G 菲涅耳  折射反射定律泊松亮斑 迈克耳逊   光速精确值 托马斯·杨  用干涉法测光波波长 库伦  库伦定律 安培   发现电流之间的相互作用力 法拉第  电磁感应 普朗克  量子理论 德布罗意  物质波 迈克斯韦  电磁波理论 赫兹  发现电磁波 汤姆生  发现电子 查德威克  发现中子 伦琴  X射线 卢瑟福  α粒子散射试验发现质子 爱因斯坦  相对论光电效应质能方程 约里奥-居里夫妇  γ射线 布朗  布朗运动 奥斯特  导线通电产生磁效

物理学史小故事

温度计的故事 对于今天的人们来说,体温表已是非常普通的东西了,不仅医院广泛使用, 就连许多家庭也都是必备之物。由于体温表能准确测出人体的温度,因而是医生 看病的得力助手。然而在300多年前,医生们曾因为无法测量病人的体温而大伤脑 筋。为了解决这一问题,人们找到了伟大的物理学家伽利略,请他帮助发明一种 能准确地测出体温的仪器。   当时伽利略正在威尼斯的一所大学任教,对医生们的这一要求,他以其科学 探索的特有勇气承担了下来,但一时又难以找到正确的解决办法,他苦苦思索着 、探求着……   一天,伽利略给学生上实验课,他提问到:“当水的温度升高,特别是沸腾 的时候,为什么水位会上升?”有个学生立即回答说:“因为水达到沸点时,体 积增大,水就膨胀上升。水冷却,体积缩小,就会降下来。”   听到学生的正确回答,伽利略不由眼前一亮,他 立即想到了测量体温的方法问题。他想:水的温度发生变化,体积也随着发生变 化。反过来,从水的体积的变化,不是也可以测出温主的变化吗?   有了发明温度表的理论依据,伽利略立即跑到实验室,根据热胀冷缩的原理 ,搞起实验来了。但是,一次次地实验都失败了,伽利略又陷入了困境。   这一天,伽利略又在实验室做实验。他用手握住试管底部,使管内的空气渐 渐变热,在后把试管上端倒插入水中,松开握着试管的手。这时他发现,试管里 的水被慢慢地吸上去一截;而当他再握住试管的时候,水又渐渐降下去一点。这 表明,从水的上升与下降,可以反映出试管内温度的变化。   伽利略根据这次实验,经过多次改进,终于在1593年制出了一个温度表。其 做法是:把一根很细的试管装上一些水排出管内的空气,再把试管封住 ,并在试管上刻上刻度,以便从水上升的刻度上知道人的体温。这样,世界上第 一个温度表就诞生了。   但这种温度表有个缺点,即到了寒冷的冬天,试管会由于水结冰体积膨胀而 被撑破。这样,这种温度表作为医用有很大的局限性。   1654年,伽利略的学生斐迪南发现了酒精不怕寒冷的特性,进一步改进了最 初的温度表,用酒精代替水,解决了冬天温度表不能使用的问题。   1657年,意大利人阿克得米亚发现水银是在常温下唯一呈液态的银白色金属 ,零下38.89摄氏度凝固,其特异的物化性能优于酒精,他又用水银代替了酒精, 使体温表的制造技术又提高一大步。1867年,英国医生奥尔巴特又改进了体温表 的笨重形态,研制出更为精巧的体温表,使用起来更方便了

物理学史:湮灭的传说

不是前后左右上下四平八稳的,空间是球形的,并有核心。 我们的宇宙空间本来就是有核心的。 质子没有形体,空空荡荡无影无形的幽灵一样的场,隐藏在空的后面。迄今没有人肯于仔细的揣摩它。以至于人们迄今对于组成宇宙的这个最基本单元模糊不清。其实这里最颠覆, 质子电子是正负电,是会中和的。 什么叫中和,就跟热和冷要中和一样, 可以中和到什么都没有。 异性相吸算什么。一提到电,物理学就仅仅知道异性相吸,甚至于他们也就仅仅意识到宏观的电那样电流电压之类。 电不是异性相吸,是中和 ,它不是别的, 它就是传说中的湮灭呀。 这湮灭就在你们眼皮子底下,天天见面,就是不认得。我接着告诉你这湮灭在哪儿。 物理学不敢想象这个中和。因为物理学不知道如何解决中和的时候 质量去了哪里 这样的问题,所以就躲着。 但是 物理学却编造了一个反粒子湮灭的谎言 。 这里明明质子电子可以湮灭,根本不需要反粒子存在。为什么编造反粒子谎言呢?就是因为 反粒子 湮灭为光 的时候可以不解释质量什么地方去了。 所以,其实反粒子不存在。 就是眼皮子底下的质子电子就是湮灭的东西。 这样的电场一看就明白,它会消失。它的消失,就是电荷消失。 是消失,不是相吸。 说质子在电场中加速,那就一定伴随质子的电荷在消失。 什么意思,说出来到处颠覆啊! 那消失的就是质量明白吗?可是如今物理学不知道 电荷跟质量的等效 关系。 这个我后面推导吧,简单的说就是电是力,力产生质量。所以电的消失就是质量的消失。 质子在电场中加速,会是怎样的情形呢?就是在电场中电荷中和 。在微观的弹性碰撞,人们不肯仔细的想,那质子在微观的弹性碰撞,不是粒子在碰撞,而是 电场在碰撞。 电场的碰撞,那又还是湮灭中和吧。爱因斯坦当然,他认为微观的质子是一个钢球,碰撞就碰撞那跟质量消失没有关系,他即使知道电场叠加碰撞也仅仅想到电场力而意识不到这里电荷本身的消失。 所以,你们应当知道,质子在电场中加速,就是质子自己的电荷被中和变成速度了 ,这就是传说中的 质能守恒。 质能守恒在物理学现在也还仅仅是传说,爱因斯坦也没有看见过。不知道那是怎样一个神奇的过程。他又是尺缩钟慢又是时空弯曲的忽悠了物理学一百年。谁也没有看见质能转换和质能守恒。这里就是,而且司空见惯。质子电子是时刻都在中和的,质能转换时刻都在发生。 正是质子电子的电荷,转化成了质子的速度。所以质量湮灭以后哪里去了呢?变成速度了。 而力是哪里来的呢?力就产生于这个中和,没有这个中和就没有力。质子在电场中加速,就是这个中和。什么意思? 所有的力都来源于质量的湮灭。所有的速度都是这里湮灭产生。 到了这里,一切才海阔天空。那质子如果被加速到光速,不是人们想的那样质量会无穷大。 它的质量会湮灭到零。那是什么?那是光啊? 光 质子 电子 会有这事儿?

求高考光的物理学史_急!!!

1.奥地利物理学家多普勒(1803-1853)——发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应2.1864年英国物理学家麦克斯韦——预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础3.1887年德国物理学家赫兹——用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。1887年证实了电磁场的存在4.公元前468-前376,我国的墨翟——在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。 5.1621年荷兰数学家斯涅耳——入射角与折射角之间的规律——折射定律。6.关于光的本质有两种学说——一种是英国物理学家牛顿主张的微粒说 认为光是光源发出的一种物质微粒; 一种是荷兰物理学家惠更斯提出的波动说 认为光是在空间传播的某种波。 7.1801年,英国物理学家托马斯•杨——观察到了光的干涉现象 8、1818年,法国科学家泊松——观察到光的圆板衍射——泊松亮斑。 9、1895年,德国物理学家伦琴——发现X射线(伦琴射线)。 10、1900年,德国物理学家普朗克——解释物体热辐射规律提出电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界; 希望对你有所帮助。

物理学史是如何加入到物理教科书的

  物理学史进入物理教科书的基本方式   在以前的物理教科书中,物理学史要么作为正文引入,要么作为课后的阅读材料,物理学史进入物理教科书的基本方式。随着基础教育改革的深入和课程标准的提出,物理教科书中物理学史内容所占的比例不断增加,明显突出了物理学史在教科书中的地位。新教科书内容的呈现方式大大增多,不同教科书有不同模块的多种栏目设置,使引入物理学史的方式也明显增多,主要有以下几种基本方式:   1、作为新知识的背景材料   如问题的提出、解决与发展;概念的形成与发展;重大科学事实的发现;重要科学规律、原理、方法的建立、应用与发展;理论体系的建立;新的分支学科的诞生等。主要出现在教材正文的介绍中。   2、作为课后阅读材料   不同版本的教科书都以这种方式引入的物理学史内容居多,不同版本的教科书设置的栏目名称有所不同,一般出现在该节的最后。例如,人教版新教材设置的栏目有“科学足迹”、“STS”等;“司南”版教材设置的栏目有“科学人物”、“专题研讨”等。   3、作为扩展性资料插入   该方式一般以栏目的形式插入到教科书的上下文之间,作为拓展性的资料引入。例如,人教版教科书以“科学漫步”的栏目插入正文之间;“司南”版教科书以“信息窗”的栏目插入;上海版教科书则以“历史回眸”的栏目插入,物理论文《物理学史进入物理教科书的基本方式》。   4、作为旁批、旁注插入   各种版本的教科书中的物理学家语录、物理学史图片等内容都以这种形式引入。这种引入方式的特点是自由灵活、可以独立插入相关的位置,对与教科书正文相关的历史知识进行简单介绍。   5、在物理绪言课中引入   新教材的绪言课都比较重视物理学史的引入,阐述物理学发展史来让学生了解物理学各个分支学科的.发生、发展过程以及整个物理学科的基本结构;阐述科学技术的发展来让学生了解物理学与科技进步的紧密关系,领悟物理学的发展对人类社会进步的巨大推动作用等。新教科书不但在高一必修课开设绪言课,而且在高二、高三的物理选修课中也开设了绪言课,增加了物理学史内容的引入机会。   6、提供物理学史的网址   一些新教材比较重视互联网资源的利用,在适当位置提供了一些相关物理学史的网址,并做好网站资源的配套建设,让学生能够在课外开展自主学习,拓宽了物理学史教育的渠道。   事实上,教科书引入物理学史知识的方式还可以多样化,使物理学史可以融入到教科书的众多栏目之中。比如可以将物理学史内容融入到“作为课内例题和课后习题”、“思考与讨论”、“想一想”、“课题研究”、“作为科技活动素材”等栏目中,使教科书与物理学史知识的融合更加自然和谐,更加充满活力

高中物理学史,不用太详细,说明那个科学家有什么贡献就行(错误的观点也要,例如亚里士多德的那个。。)

用.百.度逐一搜索那些科学家的姓名。

山东高考物理学史...急急急!!!

你可以上贴吧上找,有一个贴子特别全、

物理学史上的两朵乌云是什么?

1、第一朵乌云:迈克耳逊-莫雷实验与“以太”说破灭人们知道,水波的传播要有水做媒介,声波的传播要有空气做媒介,它们离开了介质都不能传播。太阳光穿过真空传到地球上,几十亿光年以外的星系发出的光,也穿过宇宙空间传到地球上。光波为什么能在真空中传播?它的传播介质是什么?物理学家给光找了个传播介质——“以太”。最早提出“以太”的是古希腊哲学家亚里士多德。亚里士多德认为下界为火、水、土、气四元素组成;上界加第五元素,“以太”。牛顿在发现了万有引力之后,碰上了难题:在宇宙真空中,引力由什么介质传播呢?为了求得完整的解决,牛顿复活了亚里士多德的“以太”说,认为“以太”是宇宙真空中引力的传播介质。后来,物理学家又发展了“以太”说,认为“以太”也是光波的传播介质。光和引力一样,是由“以太”传播的。他们还假定整个宇宙空间都充满了“以太”,“以太”是一种由非常小的弹性球组成的稀薄的、感觉不到的媒介。19世纪时,麦克斯韦电磁理论也把传播光和电磁波的介质说成是一种没有重量,可以绝对渗透的“以太”。“以太”既具有电磁的性质,又是电磁作用的传递者,又具有机械力学的性质,它是绝对静止的参考系,一切运动都相对于它进行。这样,电磁理论因牛顿力学取得协调一致。“以太”是光、电、磁的共同载体的概念为人们所普遍接受,形成了一门“以太学”。但是,肯定了“以太”的存在,新的问题又产生了:地球以每秒30公里的速度绕太阳运动,就必须会遇到每秒30公里的“以太风”迎面吹来,同时,它也必须对光的传播产生影响。这个问题的产生,引起人们去探讨“以太风”存在与否。为了观测“以太风”是否存在,1887年,迈克耳逊(1852-1931)与美国化学家、物理学家莫雷(1838-1923)合作,在克利夫兰进行了一个著名的实验:“迈克耳逊-莫雷实验”,即“以太漂移”实验。实验结果证明,不论地球运动的方向同光的射向一致或相反,测出的光速都相同,在地球同设想的“以太”之间没有相对运动。因而,根本找不到“以太”或“绝对静止的空间”。由于这个实验在理论上简单易懂,方法上精确可靠,所以,实验结果否定“以太”之存在是毋庸置疑的。迈克耳逊一莫雷实验使科学家处于左右为难的境地。他们或者须放弃曾经说明电磁及光的许多现象的以太理论。如果他们不敢放弃以太,那么,他们必须放弃比“以太学”更古老的哥白尼的地动说。经典物理学在这个著名实验面前,真是一筹莫展。2、第二朵乌云:黑体辐射与“紫外灾难”在同样的温度下,不同物体的发光亮度和颜色(波长)不同。颜色深的物体吸收辐射的本领比较强,比如煤炭对电磁波的吸收率可达到80%左右。所谓“黑体”是指能够全部吸收外来的辐射而毫无任何反射和透射,吸收率是100%的理想物体。真正的黑体并不存在,但是,一个表面开有一个小孔的空腔,则可以看作是一个近似的黑体。因为通过小孔进入空腔的辐射,在腔里经过多次反射和吸收以后,不会再从小孔透出。19世纪末,卢梅尔(1860-1925)等人的著名实验―黑体辐射实验,发现黑体辐射的能量不是连续的,它按波长的分布仅与黑体的温度有关。从经典物理学的角度看来,这个实验的结果是不可思议的。怎样解释黑体辐射实验的结果呢?当时,人们都从经典物理学出发寻找实验的规律。前提和出发点不正确,最后都导致了失败的结果。例如,德国物理学家维恩建立起黑体辐射能量按波长分布的公式,但这个公式只在波长比较短、温度比较低的时候才和实验事实符合。英国物理学家瑞利和物理学家、天文学家金斯认为能量是一种连续变化的物理量,建立起在波长比较长、温度比较高的时候和实验事实比较符合的黑体辐射公式。但是,从瑞利——金斯公式推出,在短波区(紫外光区)随着波长的变短,辐射强度可以无止境地增加,这和实验数据相差十万八千里,是根本不可能的。所以这个失败被埃伦菲斯特称为“紫外灾难”。它的失败无可怀疑地表明经典物理学理论在黑体辐射问题上的失败,所以这也是整个经典物理学的“灾难”。历史背景在1900年4月27日,开尔文勋爵在英国皇家研究所做了一篇名为《在热和光动力理论上空的十九世纪乌云》的发言,演讲中开尔文声称:动力学理论认为热和光都是运动的方式,现在这一理论的优美和明晰,正被两朵乌云笼罩着。—u2009开尔文勋爵,在热和光动力理论上空的十九世纪乌云。开尔文所言的两朵乌云分别是指迈克耳孙-莫雷实验测量的零结果和黑体辐射理论出现的问题。出自对牛顿理论的高度信任,开尔文也相信这两个问题会被最终扫清,发言中他针对这两个问题提出了自己的解决方案。对于波动说中为何光以外的其他物质不会和“胶状”以太发生相互作用的问题,开尔文提出假设以太是可伸缩的,从而迈克耳孙-莫雷实验不能完全否定以太的自由运动。而对于黑体辐射的问题,开尔文认为麦克斯韦、玻尔兹曼和瑞利等人对能量均分定理永远成立的维护是不必要的,“解决问题最简单的途径就是否定这一结论”。开尔文对这两个问题的在意程度反映了当时物理学界对物理学理论体系的普遍忧虑,但他很有可能没有想到的是,这两朵乌云给物理学带来的是一场突如其来的风暴,这场风暴颠覆了旧理论体系的框架,分别导致了二十世纪物理学的两大理论体系:相对论和量子力学的诞生。

怎样应用物理学史进行科学方法教育

现代物理教育观认为,知识是学生发展的载体,在教育教学过程中,最重要的不是学生学到了多少知识,而是对科学的亲近感,是掌握探索客观世界、进行科学研究的基本方法。物理学科的教学,应该把科学知识的传授和自然科学一般研究方法的训练很好地结合起来。在中学物理教学中涉及到的自然科学的一般研究方法,主要有观察、实验、抽象、理想化、比较、类比、假说、模型、数学方法等等。在物理课堂教学中,充分利用物理学史对学生进行自然科学的一般方法的训练是一个重要的途径。现举两例加以说明。一、利用物理教材中介绍的典型实验进行方法教育物理学史上不少著名的实验,如库仑扭称实验、卢瑟福-粒子散射实验、查德威克发现中子的实验等,限于设备,目前一般中学不能演示,但在教材里还是写上了。教材这样做,除了考虑到它们是重要规律,理论基础,并且有助于发展思维,还考虑到可以使学生从这些具体实例中领会物理实验的一般方法。例如,每个实验都包括提出实验任务,确定实验方法并研究如何实现,对得到的实验资料进行逻辑加工得出结论等阶段;实验的每个阶段都跟理论紧密交织着,都要用已有的理论来指导;科学仪器能帮助人们克服感觉器官的局限,使感性认识更加客观、精细、准确,因而科学仪器的设计,使用对实验的成功起重要(有时甚至是决定性的)作用。在课堂教学中,我们就要充分认识到这些著名实验的方法教育功能,要舍得化一些时间和功夫向学生介绍这些实验以及与这些实验相关的历史背景,使学生能从物理学史中得到震撼,感受物理学实验方法的魅力。例如,库仑扭秤实验的教学,课本上只是简单地向学生展示了该实验的装置,并做了简要的介绍,这一实验背后的许多知识学生是无从知道的。早在库仑进行扭秤实验的三十年前(即1755年),富兰克林就发现在带电的金属空腔中悬吊一个带电的小球时,带电小球不受力的现象,为了解释这一现象,他请别人帮着分析和演算,首先得出了电荷之间的相互作用力与电荷之间的距离平方成反比的假说。这个假说是否正确?是否应写成F∝1/r(2+δ)的形式?为了验证这一关系,1769年,罗宾逊采用直接测量的方法对两个点电荷之间的作用力进行了测定,发现当两个电荷带同种电荷时,测出的δ值大于零,当两个电荷带异种电荷时,测出的δ值小于零,δ值的数值约为0.06左右,因此他推测δ的值应为零。1785年,库仑通过扭秤实验,做出δ≤4×10-2。在此之前的1772年,卡文迪许采用测电荷的方法,给两个同心且相连的金属球充电,达到一定的电压后,断开两球之间的连线,将一个球移到无限远处放电,通过测量另一个球的带电量来验证平方反比定律。他做出的结果是δ≤2×10-2。1864年,麦克斯韦改进卡文迪许的方法,通过测带电球的电位的方法,一下子将δ的测量值提高到δ≤5×10-5的量级。从此之后,关于δ值的测定都是由麦克斯韦的实验出发,加以改造,来提高测量的精度。目前最精确的测量是由三个物理学家在1980年完成的,测得δ≤10-19。为什么要进行如此长达二百多年的测量?为什么达到10-19的数量级后还不肯罢休?那是因为所有的电磁学的规律都是由平方反比规律为前提建立起来的,在近代物理中也有很大的关系,包括光子的静止质量是否为零。尽管目前的测量说明电荷之间的相互作用十分趋近平方反比规律,在平时的物理学习中完全可以这样使用该规律,但从科学的角度看,我们离平方反比定律还有一定的距离,甚至可能就是因为这一点距离,导致物理理论的重大影响。当我们在课堂教学中向学生介绍这些物理学家一步步的实验设计以及其中包含的丰富的科学研究的方法时,当我们向学生介绍为什么科学家要千方百计地进行δ值的精确测定时,学生必定会产生心灵上的震撼,这是简单的说教和照本宣科所产生的效果不能比拟的,科学品德教育也有机地渗透在物理学史的学习之中。二、利用物理学史揭示典型的物理方法例如唯象的方法、模型的方法,是物理学研究的重要方法之一,特别是研究物质结构类的课题时,常用此法。在学习原子结构的知识时,就要充分研究历史原子结构的发现历史,并通过教学使学生能通过对学史的学习体会物理学的典型方法。其中主要的物理史料有:1897年,发现电子之后,英国的J·J·汤姆逊就认为电子应该是原子的一部分。 1901年,法国的皮兰在一次讲演中,曾提到过“原子的结构有可能具有行星式结构”,这是一种直觉的猜测,所以也没有引起人们的注意。 1903年,汤姆逊提出了“均匀模型”,也称“葡萄干面包模型”。这一设想认为正电是一个均匀球体,而电子则均匀地分布在正电球体中。 1904年,日本的长冈半太郎认为电子是个实体,带正电的物体也是个实体,两者应该分开,受麦克斯韦的论文《论土星环的稳定性》的影响,提出具有土星式结构的假说。 1909年,卢瑟福的两位助手盖革和马斯登,在卢瑟福的指导下,做了a粒子散射实验,发现了一个重要的现象,就是大角度散射,有的a粒子的散射角可超过90度。实验结果,发现8000个a粒子中只有一个粒子发生大角度散射。这个结果用以前的唯象模型都无法解释。盖革与马斯登为此请教了导师卢瑟福,卢瑟福立即意识到,要解释这一大角度散射的结果,只有正电集中在一个很小的范围内,由于库仑静电斥力,才能使a粒子产生大角度散射。于是在1911年,卢瑟福提出了“原子的有核模型”,认为正电集中在核里,电子绕核运动。1913年,盖革与马斯登通过实验证明了卢瑟福提出的模型是对的。从上面这一非常简要的回顾中,可以清楚地看出,当研究物质结构类课题时,模型方法是个很重要的方法,它往往很直观,可以让人们想象出来。在应用模型方法时,一开始往往都是唯象的,根据某一个或某些现象,凭研究者的直觉、想象,有时还采用类比的方法,借助于其他学科其他分支学科中对某些问题的结论或图象,描绘出作者想要给出的图象、模型,用数学来处理有关问题,能解释一些现象,并能做出预言,那么这一假说就走上唯理的道路,使之上升为理论。物理学史在物理教学中有着十分重要的作用,即使在学生基本的科学研究的方法的培养方面,其作用也远不止以上两点。

物理学史上的大论战—光学发展在曲折中前进(一)

理不辩则不明。今天我们书本上所见的科学知识,都是经历前人的不断探索和验证的。也就是说,知识是要经得起质疑和检验的,方能发展进步。物理学知识更是如此, 如果笃信有永恒不变的真理那就永远不会发现真理 。这是一篇浅谈以光的属性为例,来论述科学争论在物理学发展中起的作用的小论文,其目的在于科普 做学问尤其是学科学切忌教条主义、权威主义,而失掉了好奇心和质疑权威的勇气 。里面涉及光学史上的很多物理学家和成就,引用自书本。谈到光,每一位研究光学现象的物理学家都必然避不开几个问题:什么是光?光的本性是什么?它由什么组成?便是这么几个简短精确的问题,引发了物理学史上轰轰烈烈的大论战,也正是这场大论战,促使了光学的发展,虽曲曲折折,但始终在前进着。 光学的起源可以追溯到二三千年以前,我国古代墨子所著《墨经》就记载了许多光学现象和规律,例如投影(“景不徙”)、小孔成像(“景。光之人,煦若射,下者之人也高;高者之人也下。足蔽下光,故成景于上;首蔽上光,故成景于下。在远近有端,与于光,故景库内也。”)等等,西方也很早的就有研究光学知识的记载,如欧几里得的《反射光学》研究了光的反射等。但直到近代文艺复兴以来,从建立了放射定律和折射定律开始算起,奠定了几何光学的基础,光学才真正形成一门学科。这成为近代这场大论战开始的前提条件。 17世纪中期,人们对光有了更多的了解,有两种更可能的假说:微粒说和波动说。简单从字面理解一下,微粒说把光看成一种“光原子”,而波动说认为光不是物质粒子,而是由于介质的振动而产生的一种波,为此还提出了“以太”的概念:一种看不见也摸不着的介质,作为光的传播媒介。 笛卡尔率先在他的《方法论》一书中主张波动学说,认为光本质上是一种压力,在完全弹性、冲满一切空间的媒质(以太)中传递,传递的速度无限大。这场大战已硝烟弥漫,可那时谁也无预料到它的持续时间之久,程度之激烈,影响之深远。物理学家们争论间长达数个世纪,战场不仅贯穿了光学发展的全部过程,更使整个物理学都发生了翻天覆地的变化。 微粒说的历史更悠久,但随着光学的发展波动说率先开火了。胡克—物理学上的一员大将明确在1667年出版的《显微术》中主张光是一种振动,并根据云母片的薄膜干涉现象判断光是类似于水波的某种快速脉冲。接着,惠更斯发展了胡克的思想,他进一步提出光是发光体中微小粒子的振动在弥漫于宇宙空间的以太中的传播过程,还认为光的传播方式与声音类似,而不是微粒说所设想的像子弹或箭那样的运动。 尽管惠更斯发展了波动理论,推断出光和声波一样以球面波传播,并引入了惠更斯原理,但是由于他把光看成像声波一类的纵波,不能解释光的干涉、衍射和偏振现象。 波动学说曾因胡克的加入而轰动一时,但却虽着另一个人到来,而被微粒说的乌云压倒了一百多年。这个人就是历史上当之无愧的最伟大的物理学家之一—牛顿。 牛顿是倾向于微粒说的,光的复合和分解,被他比喻为不同颜色微粒的混合和分开。这遭到了胡克的强烈抨击和谴责。胡克当时是英国物理皇家学会的会长,而牛顿因发明了望远镜而当选了皇家学会的会员,牛顿当时的论文是由胡克和玻意耳两人评审的。牛顿和胡克的宿怨我们至今仍有耳闻,可想而知当时的矛盾之激烈,在物理学界水火不容。这种矛盾也激化了当时微粒说与波动说的争论,两派都各有其支持者。 后来的结果我们也知道了,牛顿发表了《原理》一书,建立起了经典力学的大厦而被捧上神坛。1703年胡克去世了,1704年牛顿出版了他的另一巨作《光学》(Opticks),在此后100年里,它都被奉为不可动摇的真理,即代表着权威,而波动说迎来了一段漫长的黑夜。 权威虽重,翻山虽难,但只有翻过山岭,打破权威,才能见新世界的阳光,否则只能在阴影中苟活。 今日暂更于此,若想知后续,看下回细细道来。

物理学史上的两朵乌云指的是什么

光量子解决的第一朵乌云,量子理论解决的是第二朵乌云。

有关物理学史的书籍

业余的还是专业的?业余的话这本书挺好:《邮票上的物理学史》http://www.welan.com/union/rec.asp?id=11592&URL=http://www.welan.com/727512/专业一点的话有两种书,一种是写的包括物理学史在内的“科学史”著作,比如《科学的历程》、《世界史上的科学技术》等等都很好,另一种是专题性的物理学史,比如这本很好:《基本粒子物理学史》http://www.welan.com/union/rec.asp?id=11592&URL=http://www.welan.com/411096/另外这本大概不错,我还没读过不能给你保证:《物理学史》http://www.welan.com/union/rec.asp?id=11592&URL=http://www.welan.com/1056583/《上帝掷骰子吗? - 量子物理史话》http://book.sina.com.cn/nzt/liangzishihua/index.shtml从牛顿年代到如今最前沿的物理!作者在网上连载后评价非常的高,语言描述方式很适合大众阅读,不象其他的物理前沿书籍不容易看懂!现在已经出书了

求中学物理新课标教材中物理学史的所有内容?写论文急用!求知道的好心人帮忙

一、力学  1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);   2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。  同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。  3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。  4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。  5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。  6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。  7、17世纪,德国天文学家开普勒提出开普勒三大定律;  8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;  9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。  10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;  俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。  11、1957年10月,苏联发射第一颗人造地球卫星;  1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。二、电磁学  12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。  13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。  18世纪中叶,美国人富兰克林提出了正、负电荷的概念。  1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。  14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。  15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。  16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。  17、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。  18、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。  19、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。  20、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。  21、荷兰物理学家洛伦兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹力)的观点。  22、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。  23、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。  (最大动能仅取决于磁场和D形盒直径,带电粒子圆周运动周期与高频电源的周期相同)  24、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。  25、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。  26、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一。三、热学  27、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。  28、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。  29、1848年 开尔文提出热力学温标,指出绝对零度是温度的下限。  30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。  21、1642年,科学家托里拆利提出大气会产生压强,并测定了大气压强的值。  四年后,帕斯卡的研究表明,大气压随高度增加而减小。  1654年,为了证实大气压的存在,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验。四、波动学  22、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。  23、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。  24、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。五、光学  25、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。  26、1801年,英国物理学家托马斯u2022杨成功地观察到了光的干涉现象。  27、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑。  28、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。  29、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。  30、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。  31、1800年,英国物理学家赫歇耳发现红外线;  1801年,德国物理学家里特发现紫外线;  1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。  32、激光——被誉为20世纪的“世纪之光”。六、波粒二象性  33、1900年,德国物理学家普朗克为解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的(电磁波的发射和吸收不是连续的),而是一份一份的,每一份就是一个最小的能量单位,即能量子E=hν,把物理学带进了量子世界;  受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。  34、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。  35、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,最先得出氢原子能级表达式,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。  36、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。  37、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;  1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。七、相对论  38、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),  ②热辐射实验——量子论(微观世界);  39、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。  40、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:  ①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;  ②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。  狭义相对论的其他结论:  ①时间和空间的相对性——长度收缩和动钟变慢(或时间膨胀)  ②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。  ③相对论质量:物体运动时的质量大于静止时的质量。  41、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:E=mc2。八、原子物理学  42、1858年,德国科学家普吕克尔发现了一种奇妙的射线——阴极射线(高速运动的电子流)。  43、1897年,汤姆生利用阴极射线管发现了电子,指出阴极射线是高速运动的电子流。说明原子可分,有复杂内部结构,并提出原子的枣糕模型。1906年,获得诺贝尔物理学奖。  44、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m 。  45、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。  天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。  46、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,  并预言原子核内还有另一种粒子——中子。  47、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。  48、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。  49、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。  50、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。  51、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。  52、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。  53、粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;  轻子-不参与强相互作用的粒子,如:电子、中微子;  强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子。  54、1964年盖尔曼提出了夸克模型,认为介子是由夸克和反夸克所组成,重子是由三个夸克组成。

高考物理学史和研究方法的总结,越全越好,手机软件的总结也可以。

不可以

《物理学史》读书笔记3000字 - 读书笔记

  物理学史是人类对自然界中各种物理现象的认识史,它研究的是物理学发生、发展的规律,说明了物理学中的基本概念、定律和理论体系的酝酿、产生和发展的辩证过程。它是一座知识财富的宝库,不仅展示了物理学理论形成的前因后果、来龙去脉,而且深刻的揭示了物理学的研究方法;它也是一块精神财富的宝地,物理学的发展极大地改变着人们的自然观、世界观,升华了人们对人与自然,人与社会的认识。与此同时,物理学家在探求真理的过程中展现出的人格魅力,不畏艰险献身科学的高尚品格,也给后人增添了无穷的榜样力量。物理学不仅以其知识、方法和思想极大的促进了自身的发展,而且在更广阔的领域深刻的影响着人类文明的进程,成为人类文化的一部分。   学习物理学史就是为了了解物理学所走过的道路,它将有助于我们更深刻地认识物理学,更有效地应用和发展物理学。过去很多人总是在说“以史为鉴”,但我们认为对物理学史的学习仅仅“以史为鉴”还远不能满足时代的要求,更应该在“以史为鉴”的基础上“以史为器”去发展、去创新。物理学史和自然科学史告诉我们,历史上的一些发明、创造并不是前人研究内容的简单重复,而往往是前人研究方法、思维特征的重现,并且它更是螺旋形上升的。   在物理教学中适当引入物理学史教育,让学生更多的了解科学发展的历程,并从前人的经验中受到启发、教益,从而感悟科学方法,提升人文素养,培养创新意识,是素质教育全面发展观的基本要求,也是落实新课标“三维目标”的必然选择。   下面,从几个方面简述物理学史的作用:   一、感悟科学方法   物理学的发展史是一部物理学方法论的发展史,物理学在发展过程中,不仅产生了宝贵的理论成果,更留给后人值得深思的物理学的研究方法。物理发展的历史证明,每一次重大科学理论的突破,往往都伴随着新的科学方法的诞生,而新的科学方法又反过来促进物理学的发展。   力学是物理学中发展最早的一个分支,机械运动是力学中最直观、最简单、也是最便于观察因而也最早得到研究的一种运动形式。然而,和物理学的其他部门相比,力学的研究却经历了更为漫长的过程。从古希腊时代算起,这个过程几达二千年之久。只所以会如此漫长,一个很重要的原因就是人类缺乏经验,缺乏正确的科学研究方法,因而也就难以得出正确的科学结论。亚里士多德是古希腊时代人类历史上少数百科全书式的大哲学家,而且是通过观察自然,运用形而上学的哲学思想方法试图解释自然,奠定物理学思想萌芽的人。然而,由于历史的局限,亚里士多德对自然的研究仅仅停留在“观察”和“思辩”的层面上,致使像“力是维持物体物运动的原因,重的物体下落得快,轻的物体下落得慢”等错误长期统治着人们的思想。   但是,伽利略没有仅仅停留在逻辑思辩上,而是继续做了斜面实验。他发现,落体的速度越来越快,是一种匀加速运动,而且加速度与重量无关;他还发现,斜面越陡,加速度越大,斜面越平,则加速度越小,在极限情况下,斜面垂直,相当于自由下落,不同物体的加速度是一样的。当斜面完全水平时,加速度为零,这时,一个运动着的物体就应该是沿直线永远运动下去。斜面实验表明,物体运动的保持并不需要外力,需要外力的是物体运动的改变。伽俐略最终用“理想实验”由斜面的情形推到自由落体和水平运动的情形。   伽俐略逻辑推理与实验验证相结合的思维方式,为后人找到了研究物理的正确科学方法。从此,“一门博大精深的科学已经出现”(伽俐略语),物理从此从哲学中分离出来并得以迅速发展。纵观物理学三百余年的发展史,可以看出,实验在检验已知理论,探索未知规律等方面起到了不可替代的作用。早在1687年,牛顿在其出版的《自然哲学的数学原理》一书中就已经正式提出了万有引力定律,可直到一百多年后的1798年,英国科学家卡文笛许利用扭称这一巧妙的实验装置测出引力常数后,万有引力定律才得以全面的展示在世人面前;麦克斯韦对电磁波理论进行了长达十年的研究,并以一组简洁的数学方程把电磁波理论概括得十分优美对称,但当年却难以令人信服,直到二十多年后他预言的电磁波被赫兹的实验所证实,他的学说才成为举世公认的电磁理论基础;1905年,爱因斯坦用光电子假说总结了光的微粒说和波动说之间长期的争论,能很好的解释光电效应的实验结果,但是直到1916年,当密立根以其严密的实验全面地证实了爱因斯坦的光电方程后,光的粒子性才被人们所接受……可以说:实验,只有实验,才是物理学的基础。   将物理学史引入课堂,不仅能使学生有身临其境之感,而且能领略前辈大师的研究方法,得其精髓,有所借鉴。   二、提升人文素养   物理学史是一部人文史,物理学家们在从事科学活动的过程中,不仅揭示了自然界基本运动形式的诸多真理,同时也为后人树立了一座座道德丰碑。科学家们在探索自然的过程中展现出的人格魅力、人文素养,对科学事业的执着追求精神,都会使学生的情感升华,对引导学生确立正确的人生观和价值观,实现人格的完美化具有积极的促进作用。牛顿是经典物理的奠基人,但他却谦称自己“站在巨人的肩膀上”;居里夫妇是镭元素的发现者,然而他们却没有居功自傲,“镭只是一种元素,它属于世界所有,科学应当为大众服务,它应当属于全人类。”她说过的这句话一定会给学生留下深刻的印象   物理学史也是一部美学史,对称、和谐、统一等美学要素在物理学的发展中起着非常重要的文化导向作用。当先人们对天体的运动还充满着神秘与未知时,却能直观的感受到其运动轨道应该是圆周,因为“圆是美的”。物理之美是直观的,比如彩虹是极美的表面现象,人人都可以看到;物理之美也是深刻的,电荷之间的引力与物体之间的万有引力都遵循平方反比率,电子绕核运动的模型和星体之间的模型相仿等等无一不显示着物理学深刻的统一美。   物理学是一门与自然、生活、技术进步和社会发展有着最广泛联系的科学。它可以揭开大千世界的奥秘,使学生志向高远,憧憬未来,本应该是学生最为钟情的一门课程。然而,有时它竟成为学生最为头疼和恐惧的课程。这不能不说是单一课程目标与僵化教学模式的一个苦果,我们有理由相信,充分重视物理课程中的人文素养资源,坚持三维课程目标,就一定能够焕发物理课程的魅力。

物理学史能学到什么有用的知识?

物理学史是科学发展史,而科学是人类发展的核心部分。每次物理学上的重大突破,都会对人类社会发展产生重大影响,产生震撼人心的冲击和重大技术革命。特别是近代以来,历次物理学重大进展通过技术革命为中心转化为直接生产力,从而推动了社会经济的发展,并最终引发社会革命,推动人类社会从农业社会到工业社会,从蒸汽时代进入电力时代、电子和原子能时代以至现今的信息时代。楼主可以多关注些物理学类的科普书,关于物理学在日常生活中的应用可以看下《鬼脸物理课》,一旦开始读就停不下来。

高考必考物理学史知识点总结

必考内容 选考内容1 质点直线运动: 参考系 质点 位移(S=v0t+at2/2) 速度(vt= v0 +at) 加速度(a=F/m=( vt-v0) /t) 相互作用与牛顿定律: 动摩擦力(f=uN) 静摩擦力 (f=-F) 弹力(胡克定律F=-kx) 力的合成与分解(满足平行四边形法则)2 机械能: 功(W=FScosA) 功率(P=FvcosA) 动能定理(W=E2- E1)(E=mv2/2) ▲①万有引力做功(W=GMm[(1/R)-(1/r)])只和半径有关(r→R) ▲②重力做功(W=mg(h-H)) 只和高度有关(h→H)▲③弹力做功(W=(1/2)k[(x2)-( X2)]) 只和弹簧现在长度与原长度的变化量的绝对值有关(x→X, x=L-L", L为伸长后的长度,L"为弹簧原长)▲始终与速度垂直的力不做功抛体运动与圆周运动 : 运动合成与分解(满足平行四边形法则,竖直位移y=gt2/2, 水平位移x=vt) 角速度(w=A/t=v/r) 线速度(v=L/t=Ar/t=wr) 向心加速度(a=v2/r方向指向圆心) 需要的向心力(f=mv2/r方向指向圆心) 万有引力定律 (F=GMm/r2)3-1 电场 电路 磁场: 电荷守恒定律(电荷总数不变) 库仑定律(F=kQq/r2) 场强(E=F/q) 点电荷场强(E=kQ/r2)电势(能) 电容关系式(c=Q/U) 欧姆定律(R=U/I) 电阻定律(R=ρL/s) 电动势(E=I(R+r)) 内阻(r) 电功率(P=UI) 焦耳定律 (Q=I2Rt)3-2 电磁感应 交变电流:通电导线周围磁场(右手定则) 安培力(F=BIL 方向左手定则) 洛仑兹力(F=qvB方向左手定则) 磁通量(Ф=BScosA) 楞次定律 交变电流图像3-3 分子动理论(分子始终在做无规则运动) 统计观点 固体 液体 气体 理想气体: ▲ ①c=PV/T (c为常数,不变) ▲ ②△U=Q+W (V增大,气体对外界做功,W<0)▲ ③U=kT (温度越高,内能越大)(导热性良好说明T不变,绝热说明Q=0)3-4 机械振动与机械波: 简谐振动 单摆周期(T=2п√(L/g)) 频率(f=1/T) 波速(v=λ/ T) 波长(λ) 干涉(△y=Lλ/d) 衍射 多普勒效应(频率变化:远去f↓,近来f↑) 电磁振荡与电磁波: 折射定律(sini/sinr= v1/v2) 反射定律(i=r) 折射率(n= sini/sinr= v1/v2)光 相对论3-5 碰撞与动量守恒(mv1+Mv2= mv1t+Mv2t) 原子结构(原子核与核外电子)原子核(质子和中子)波粒二象性

如何系统地学习物理学史呢?

物理学史是科学发展史,而科学是人类发展的核心部分。每次物理学上的重大突破,都会对人类社会发展产生重大影响,产生震撼人心的冲击和重大技术革命。特别是近代以来,历次物理学重大进展通过技术革命为中心转化为直接生产力,从而推动了社会经济的发展,并最终引发社会革命,推动人类社会从农业社会到工业社会,从蒸汽时代进入电力时代、电子和原子能时代以至现今的信息时代。楼主可以多关注些物理学类的科普书,关于物理学在日常生活中的应用可以看下《鬼脸物理课》,一旦开始读就停不下来。

物理学史有什么作用?

物理学史是研究人类对自然界各种物理现象的认识史,它的基本任务就是描述物理概念、定律、理论和研究方法的脉络,提示物理学观念、方法和内容的发生、发展的原因和规律性。今天是昨天的延续,了解历史是为了更好地把握未来。所以在物理教学中,物理学史理应成为一种珍贵的教学资源。但由于受应试教育观念的影响及物理教材本身的因素,物理教师很难把物理学中丰富多彩的内容引人入胜地传达给学生,使得学生对物理基本概念、规律的由来只知其一不知其二,物理知识在学生看来是深奥、难懂的,因而学生对学习物理越来越觉得乏味、难学,越来越缺乏热情。这与物理学在科技与社会发展中越来越重要的地位是相矛盾的。而研究学习物理学史,在教学中必将为物理教学注入新的活力,还“历史”真像与学生,让他们一同与人类探索自然的历史,与科学家追求科学、追求真理、勇于实践、艰苦卓越的奋斗足迹,共悲同喜。这将赋予物理知识于生命意义,有利于激发学生学习物理、攀登科学高峰的热情,下面就几个方面谈谈物理学史在物理教学中的作用

2011新课标物理学史 急急急!!!!

已经发过去了,祝你考试成功

为什么物理学史很重要?

物理学史是科学发展史,而科学是人类发展的核心部分。每次物理学上的重大突破,都会对人类社会发展产生重大影响,产生震撼人心的冲击和重大技术革命。特别是近代以来,历次物理学重大进展通过技术革命为中心转化为直接生产力,从而推动了社会经济的发展,并最终引发社会革命,推动人类社会从农业社会到工业社会,从蒸汽时代进入电力时代、电子和原子能时代以至现今的信息时代。楼主可以多关注些物理学类的科普书,关于物理学在日常生活中的应用可以看下《鬼脸物理课》,一旦开始读就停不下来。

高考物理学史方面的问题

顶一楼,很全啊

求物理学史

新课标高考高中物理学史(新人教版)一、力学:1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。8、17世纪,德国天文学家开普勒提出开普勒三大定律;9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。9、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。10、1957年10月,苏联发射第一颗人造地球卫星;1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。11、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。12、17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星。选修部分:(选修3-1、3-2、3-3、3-4、3-5)二、电磁学:(选修3-1、3-2)13、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。16、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。17、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。18、1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。19、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳——楞次定律。20、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。21、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流假说;并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。22、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。23、英国物理学家汤姆生发现电子,并指出:阴极射线是高速运动的电子流。24、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。25、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径。带电粒子圆周运动周期与高频电源的周期相同;但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显著增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难。26、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。27、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。28、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一,双绕线法制精密电阻为消除其影响应用之一。五、波动学(3-4选做):33、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。34、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。35、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。【相互接近,f增大;相互远离,f减少】36、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。电磁波是一种横波37、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。38、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。39、1800年,英国物理学家赫歇耳发现红外线;1801年,德国物理学家里特发现紫外线;1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。六、光学(3-4选做):40、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。41、1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象。42、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射—泊松亮斑。43、1864年,英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波;1887年,赫兹证实了电磁波的存在,光是一种电磁波44、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。45、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:。46.公元前468-前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。47.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。(注意其测量方法)48.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒;另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。这两种学说都不能解释当时观察到的全部光现象。七、相对论(3-4选做):49、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界), ②热辐射实验——量子论(微观世界);50、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。51、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。52、1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子;53、激光——被誉为20世纪的“世纪之光”;八、波粒二象性(3-5选做):54、1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。55、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。(说明动量守恒定律和能量守恒定律同时适用于微观粒子)56、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。57、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;58、1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。十、原子物理学(3-5选做):59、1858年,德国科学家普里克发现了一种奇妙的射线——阴极射线(高速运动的电子流)。60、1906年,英国物理学家汤姆生发现电子,获得诺贝尔物理学奖。61、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。62、1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。63、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15m。1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。64、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。65、1913年,丹麦物理学家波尔最先得出氢原子能级表达式;66、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。67、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。68、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子——中子。69、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。70、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。71、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。63、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。72、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。73、1932年发现了正电子,1964年提出夸克模型;粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子; 轻子-不参与强相互作用的粒子,如:电子、中微子; 强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子,强子由更基本的粒子夸克组成,夸克带电量可能为元电荷.物理学史专题★伽利略(意大利物理学家)对物理学的贡献:①发现摆的等时性②物体下落过程中的运动情况与物体的质量无关③伽利略的理想斜面实验:将实验与逻辑推理结合在一起探究科学真理的方法为物理学的研究开创了新的一页(发现了物体具有惯性,同时也说明了力是改变物体运动状态的原因,而不是使物体运动的原因)经典题目伽利略根据实验证实了力是使物体运动的原因(错)伽利略认为力是维持物体运动的原因(错)伽俐略首先将物理实验事实和逻辑推理(包括数学推理)和谐地结合起来(对)伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去(对)★胡克(英国物理学家)对物理学的贡献:胡克定律经典题目胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)★牛顿(英国物理学家)对物理学的贡献①牛顿在伽利略、笛卡儿、开普勒、惠更斯等人研究的基础上,采用归纳与演绎、综合与分析的方法,总结出一套普遍适用的力学运动规律——牛顿运动定律和万有引力定律,建立了完整的经典力学(也称牛顿力学或古典力学)体系,物理学从此成为一门成熟的自然科学②经典力学的建立标志着近代自然科学的诞生经典题目牛顿发现了万有引力,并总结得出了万有引力定律,卡文迪许用实验测出了引力常数(对)牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动(对)牛顿提出的万有引力定律奠定了天体力学的基础(对)★卡文迪许贡献:测量了万有引力常量典型题目牛顿第一次通过实验测出了万有引力常量(错)卡文迪许巧妙地利用扭秤装置,第一次在实验室里测出了万有引力常量的数值(对)★亚里士多德(古希腊)观点:①重的物理下落得比轻的物体快②力是维持物体运动的原因经典题目亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动(对)★开普勒(德国天文学家)对物理学的贡献 开普勒三定律经典题目开普勒发现了万有引力定律和行星运动规律(错)托勒密(古希腊科学家)观点:发展和完善了地心说哥白尼(波兰天文学家) 观点:日心说第谷(丹麦天文学家) 贡献:测量天体的运动威廉?赫歇耳(英国天文学家)贡献:用望远镜发现了太阳系的第七颗行星——天王星汤苞(美国天文学家)贡献:用“计算、预测、观察和照相”的方法发现了太阳系第九颗行星——冥王星泰勒斯(古希腊)贡献:发现毛皮摩擦过的琥珀能吸引羽毛、头发等轻小物体★库仑(法国物理学家)贡献:发现了库仑定律——标志着电学的研究从定性走向定量典型题目库仑总结并确认了真空中两个静止点电荷之间的相互作用(对)库仑发现了电流的磁效应(错)富兰克林(美国物理学家)贡献:①对当时的电学知识(如电的产生、转移、感应、存储等)作了比较系统的整理②统一了天电和地电密立根 贡献:密立根油滴实验——测定元电荷昂纳斯(荷兰物理学家) 发现超导欧姆: 贡献:欧姆定律(部分电路、闭合电路)★奥斯特(丹麦物理学家)电流的磁效应(电流能够产生磁场)经典题目奥斯特最早发现电流周围存在磁场(对)法拉第根据小磁针在通电导线周围的偏转而发现了电流的磁效应(错)★法拉第贡献:①用电场线的方法表示电场②发现了电磁感应现象③发现了法拉第电磁感应定律(E=n△Φ/△t)经典题目奥斯特发现了电流的磁效应,法拉第发现了电磁感应现象(对)法拉第发现了磁场产生电流的条件和规律(对)奥斯特对电磁感应现象的研究,将人类带入了电气化时代(错)法拉第发现了磁生电的方法和规律(对)★安培(法国物理学家)①磁场对电流可以产生作用力(安培力),并且总结出了这一作用力遵循的规律②安培分子电流假说经典题目安培最早发现了磁场能对电流产生作用(对)安培提出了磁场对运动电荷的作用力公式(错)狄拉克(英国物理学家)贡献:预言磁单极必定存在(至今都没有发现)★洛伦兹(荷兰物理学家)贡献:1895年发表了磁场对运动电荷的作用力公式(洛伦兹力)阿斯顿贡献:①发现了质谱仪 ②发现非放射性元素的同位素劳伦斯(美国) 发现了回旋加速器★楞次 发现了楞次定律(判断感应电流的方向)★汤姆生(英国物理学家)贡献:①发现了电子(揭示了原子具有复杂的结构)②建立了原子的模型——枣糕模型经典题目汤姆生通过对阴极射线的研究发现了电子(对)★卢瑟福(英国物理学家)指导助手进行了α粒子散射实验(记住实验现象)提出了原子的核式结构(记住内容)发现了质子经典题目汤姆生提出原子的核式结构学说,后来卢瑟福用 粒子散射实验给予了验证(错)卢瑟福的原子核式结构学说成功地解释了氢原子的发光现象(错)卢瑟福的a粒子散射实验可以估算原子核的大小(对)卢瑟福通过对α粒子散射实验的研究,揭示了原子核的组成(对)★波尔(丹麦物理学家)贡献:波尔原子模型(很好的解释了氢原子光谱)经典题目玻尔把普朗克的量子理论运用于原子系统上,成功解释了氢原子光谱规律(对)玻尔理论是依据a粒子散射实验分析得出的(错)玻尔氢原子能级理论的局限性是保留了过多的经典物理理论(对)★贝克勒尔(法国物理学家)发现天然放射现象(揭示了原子核具有复杂结构)经典题目天然放射性是贝克勒尔最先发现的(对)贝克勒尔通过对天然放射现象的研究发现了原子的核式结构(错)★伦琴 贡献:发现了伦琴射线(X射线)★查德威克 贡献:发现了中子★约里奥?居里和伊丽芙?居里夫妇①发现了放射性同位素②发现了正电子经典题目居里夫妇用α粒子轰击铝箔时发现电子(错)约里奥?居里夫妇用α粒子轰击铝箔时发现正电子(对)★普朗克 贡献:量子论★爱因斯坦贡献:①用光子说解释了光电效应②相对论经典题目爱因斯坦提出了量子理论,普朗克提出了光子说(错)爱因斯坦用光子说很好地解释了光电效应(对)是爱因斯坦发现了光电效应现象,普朗克为了解释光电效应的规律,提出了光子说(错)爱因斯坦创立了举世瞩目的相对论,为人类利用核能奠定了理论基础;普朗克提出了光子说,深刻地揭示了微观世界的不连续现象(错)★麦克斯韦贡献:①建立了完整的电磁理论②预言了电磁波的存在,并且认为光是一种电磁波(赫兹通过实验证实电磁波的存在)经典题目普朗克在前人研究电磁感应的基础上建立了完整的电磁理论(对)麦克斯韦从理论上预言了电磁波的存在,赫兹用实验方法给予了证实(对)麦克斯韦通过实验证实了电磁波的存在(错)附高中物理学史(旧人教版)1、1638年,意大利物理学家伽利略①论证重物体不会比轻物体下落得快; ②伽利略的通过斜面理想实验和牛顿逻辑推理得出牛顿第一定律;伽利略通过斜面实验得出自由落体运动位移与时间的平方成正比③伽利略发现摆的等时性(周期只与摆的长度有关),惠更斯根据这个原理制成历史上第一座摆钟2、英国科学家牛顿1683年,提出了三条运动定律。1687年,发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量;3、17世纪,伽利略理想实验法指出:水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;4、20爱因斯坦提出的狭义相对论经典力学不适用于微观粒子和高速运动物体。5、17世纪德国天文学家开普勒提出开普勒三定律;6、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。7、1752年,富兰克林(1)过风筝实验验证闪电是电的一种形式,把天电与地电统一起来,并发明避雷针。(2)命名正负电荷(3)1751年富兰克林发现莱顿瓶放电可使缝衣针磁化8、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。9、1911年荷兰科学家昂尼斯大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。10、1841~1842年 焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律。11、1820年,丹麦物理学家奥斯特电流可以使周围的磁针偏转的效应,称为电流的磁效应。12、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。13、1831年英国物理学家法拉第(1)发现了由磁场产生电流的条件和规律——电磁感应现象;(2)提出电荷周围有电场,并用简洁方法描述了电场—电场线。14、1834年,楞次确定感应电流方向的定律。15、1832年,亨利发现自感现象。 16、1864年英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。17、1887年德国物理学家赫兹用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。18、公元前468-前376,我国的墨翟在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。19、1621年荷兰数学家斯涅耳入射角与折射角之间的规律——折射定律。20、关于光的本质有两种学说:一种是牛顿主张的微粒说:认为光是光源发出的一种物质微粒;一种是荷兰物理学家惠更斯提出的波动说:认为光是在空间传播的某种波。21、1801年,英国物理学家托马斯u2022杨观察到了光的干涉现象22、1818年,法国科学家泊松观察到光的圆板衍射——泊松亮斑。23、1895年,德国物理学家伦琴发现X射线(伦琴射线)。24、1900年,德国物理学家普朗克解释物体热辐射规律提出电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;25、1905年爱因斯坦提出光子说,成功地解释了光电效应规律。26、1913年,丹麦物理学家玻尔提出了原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱。27、1924年,法国物理学家德布罗意预言了实物粒子的波动性;28、1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。29、1909年-1911年,英国物理学家卢瑟福进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m 。30、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核也有复杂的内部结构。31、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。32、1932年查德威克在α粒子轰击铍核时发现中子,由此人们认识到原子核的组成。33、1932年发现了正电子,1964年提出夸克模型;粒子分为三大类:媒介子,传递各种相互作用的粒子如光子; 轻子,不参与强相互作用的粒子如电子、中微子; 强子,参与强相互作用的粒子如质子、中子;强子由更基本的粒子夸克组成,夸克带电量可能为元电荷的 或 。34.密立根测定电子的电量35.瓦特在1782年研制成功了具有连杆、飞轮和离心调速器的双向蒸汽机。36.人类对天体的认识从“地心说—托勒密”到“日心说—哥白尼”到“开普勒定律”再到“牛顿的万有引力定律”。 直到1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量万有引力定律显示出强大的威力。

高中物理学史(全部)

能多发点财富值么新课标高考高中物理学史(新人教版)必修部分:(必修1、必修2 )一、力学:1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。8、17世纪,德国天文学家开普勒提出开普勒三大定律;9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。9、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。10、1957年10月,苏联发射第一颗人造地球卫星;1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。11、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。12、17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星。选修部分:(选修3-1、3-2、3-3、3-4、3-5)二、电磁学:(选修3-1、3-2)13、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。14、1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。16、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。17、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。18、1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。详细请看http://tieba.baidu.com/f?kz=1197564491,希望对你有帮助!

高中课本里涉及到的物理学史

发现中子的叫查德威克

学习物理学史的意义?

物理学史是科学发展史,而科学是人类发展的核心部分。每次物理学上的重大突破,都会对人类社会发展产生重大影响,产生震撼人心的冲击和重大技术革命。特别是近代以来,历次物理学重大进展通过技术革命为中心转化为直接生产力,从而推动了社会经济的发展,并最终引发社会革命,推动人类社会从农业社会到工业社会,从蒸汽时代进入电力时代、电子和原子能时代以至现今的信息时代。楼主可以多关注些物理学类的科普书,关于物理学在日常生活中的应用可以看下《鬼脸物理课》,一旦开始读就停不下来。

高考常考的物理学史,要求简单明了的

高中物理学史总结一、力学  1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);   2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。  同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。  3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。  4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。  5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。  6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。  7、17世纪,德国天文学家开普勒提出开普勒三大定律;  8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;  9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。  10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;  俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。  11、1957年10月,苏联发射第一颗人造地球卫星;  1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。二、电磁学  12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。  13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。  18世纪中叶,美国人富兰克林提出了正、负电荷的概念。  1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。  14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。  15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。  16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。  17、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。  18、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。  19、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。  20、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。  21、荷兰物理学家洛伦兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹力)的观点。  22、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。  23、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。  (最大动能仅取决于磁场和D形盒直径,带电粒子圆周运动周期与高频电源的周期相同)  24、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。  25、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。  26、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一。三、热学  27、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。  28、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。  29、1848年 开尔文提出热力学温标,指出绝对零度是温度的下限。  30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。  21、1642年,科学家托里拆利提出大气会产生压强,并测定了大气压强的值。  四年后,帕斯卡的研究表明,大气压随高度增加而减小。  1654年,为了证实大气压的存在,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验。四、波动学  22、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。  23、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。  24、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。五、光学  25、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。  26、1801年,英国物理学家托马斯61杨成功地观察到了光的干涉现象。  27、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑。  28、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。  29、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。  30、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。  31、1800年,英国物理学家赫歇耳发现红外线;  1801年,德国物理学家里特发现紫外线;  1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。  32、激光——被誉为20世纪的“世纪之光”。六、波粒二象性  33、1900年,德国物理学家普朗克为解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的(电磁波的发射和吸收不是连续的),而是一份一份的,每一份就是一个最小的能量单位,即能量子E=hν,把物理学带进了量子世界;  受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。  34、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。  35、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,最先得出氢原子能级表达式,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。  36、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。  37、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;  1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。七、相对论  38、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),  ②热辐射实验——量子论(微观世界);  39、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。  40、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:  ①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;  ②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。  狭义相对论的其他结论:  ①时间和空间的相对性——长度收缩和动钟变慢(或时间膨胀)  ②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。  ③相对论质量:物体运动时的质量大于静止时的质量。  41、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:E=mc2。八、原子物理学  42、1858年,德国科学家普吕克尔发现了一种奇妙的射线——阴极射线(高速运动的电子流)。  43、1897年,汤姆生利用阴极射线管发现了电子,指出阴极射线是高速运动的电子流。说明原子可分,有复杂内部结构,并提出原子的枣糕模型。1906年,获得诺贝尔物理学奖。  44、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m 。  45、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。  天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。  46、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,  并预言原子核内还有另一种粒子——中子。  47、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。  48、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。  49、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。  50、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。  51、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。  52、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。  53、粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;  轻子-不参与强相互作用的粒子,如:电子、中微子;  强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子。  54、1964年盖尔曼提出了夸克模型,认为介子是由夸克和反夸克所组成,重子是由三个夸克组成。

高考物理的物理学史

科学家 主要贡献 亚里士多德 力是维持物理运动状态的原因 伽利略 意大利 1638年,论证重物体不会比轻物体下落得快;伽利略理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去(17世纪) 笛卡儿 物体不受外力时,总保持静止或运动状态 牛顿 英国 1683年,提出了三条运动定律,1687年,发表万有引力定律; 开普勒 德国 17世纪提出开普勒三定律; 卡文迪许 英国 1798年利用扭秤装置比较准确地测出了引力常量 库仑 法国 发现了电荷之间的相互作用规律——库仑定律 密立根 美国 通过油滴实验测定了元电荷的数值。e=1.6×10-19C 昂尼斯 荷兰 大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。 焦耳和楞次 先后各自独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律(1834年楞次确定感应电流方向的定律) 奥斯特 丹麦 电流可以使周围的磁针偏转的效应,称为电流的磁效应 洛仑兹 荷兰 提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点 笛卡儿 法国 第一个提到“动量守恒定律” 安培 法国 分子环形电流假说(原子内部有环形电流) 法拉第 英国 发现的电磁感应现象使人类的文明跨进了电气化时代。在1821年,法拉第在重复奥斯特“电生磁”实验时,制造出人类历史上第一台最原始的电动机。 亨利 美国 最大的贡献是在1832年发现自感现象 汤姆孙 英国 利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型(葡萄干布丁模型),从而敲开了原子的大门 普朗克 德国 量子论的奠基人。为了解释黑体辐射,提出了能量量子假说解释物体热辐射规律提出电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界 爱因斯坦 德国 提出光子说(科学假说),成功地解释了光电效应规律提出的狭义相对论(经典力学不适用于微观粒子和高速运动物体)总结出质能方程:(2005年被联合国定为“世界物理年”,以表彰他对科学的贡献) 普吕克尔 德国 德国科学家发现了阴极射线。 卢瑟福 英国 进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m ;用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子(该实验表明了原子内质量和电量的分布,并没有揭示原子核的组成),并预言了中子的存在 玻尔 丹麦 量子力学的先驱。吸取普朗克、爱恩斯坦的量子概念,提出原子结构的玻尔理论,成功解释了氢原子光谱。最先得出氢原子能级表达式 贝克勒尔 法国 发现天然放射现象,说明原子核也有复杂的内部结构 查德威克 英国 在α粒子轰击铍核时发现中子(原子核人工转变的实验),由此人们认识到原子核的组成 居里夫妇 法国 发现了放射性更强的钋和镭。

初二物理学史是什么

物理学史是物理学在历史进程中的发生、发展过程。近代意义的物理学诞生于欧洲15—17世纪。人们一般将欧洲历史 作为物理学史的社会背景。从远古到公元5世纪属古代史时期;5—13世纪为中世纪时期;14—16世纪为文艺复兴运动时期;16—17世纪为科学革命时期,以N.哥白尼、伽利略、牛顿为代表的近代科学在此时期产生,从此之后,科学随各个世纪的更替而发展。近半个世纪,人们按照物理学史特点,将其发展大致分期如下:①从远古到中世纪属古代时期。②从文艺复兴到19世纪,是经典物理学时期。牛顿力学在此时期发展到顶峰,其 时空观、物质观和因果关系影响了光、声、热、电磁的各学科,甚而影响到物理学以外的自然科学和社会科学。③随着20世纪的到来,量子论和相对论相继出现;新的时空观、概率论和不确定度关系等在宇观和微观领域取代牛顿力学的相关概念,人们称此时期为近代物理学时期。

物理学史 简答题

以上都不会

高中物理中出现的所有物理学史资料的总结

高中物理学史总结力学中的物理学史:1、前384年—前322年,亚里士多德:错误的认为“维持物体运动需要力”。2、1638年伽利略:最早研究“匀加速直线运动”;。3、1683年,牛顿:总结三大运动定律、发现万有引力定律。4、1798年卡文迪许:测出了万有引力常量G。5、1905年爱因斯坦:提出狭义相对论,电、磁学中的物理学史:1、1785年库仑:库仑定律。2、1826年欧姆:欧姆定律3、1820年,丹麦奥斯特:电流的磁效应。4、1831年英国法拉第:电磁感应现象。5、1834年,俄国楞次:楞次定律。6、1864年英国麦克斯韦:预言了电磁波的存在。7、1888年德国物理学家赫兹:发现“光电效应现象”。光学、原子物理中的物理学史:1、历史上关于光的本质有两种学说:一种是牛顿主张的微粒说;一种是荷兰惠更斯提出的波动说。2、1801年,英国托马斯·杨:通过“杨氏双缝干涉实验”观察到了光的干涉现象,证实了光的波动性。3、1818年,法国科学家泊松:观察到光的圆板衍射——泊松亮斑。 4、1895年,德国伦琴:X射线(伦琴射线)。具有很强的穿透本领,能使荧光物质发出荧光,还能使照相底片感光。5、1900年,德国普朗克:提出电磁波的发射和吸收不是连续的,而是一份一份的。6、1905年爱因斯坦:提出了“光子说”,成功地解释了光电效应规律。7、1897年,汤姆生:利用阴极射线管发现了电子.

物理学史 轶事 趣闻

朋友,你一定知道法拉第这个光辉的名字吧!他在1831年发现的电磁感应现象,预告了发电机的诞生,开创了电气化的新时代。他毕生致力研究的科学理论——场的理论,引起了物理学的革命。相传法拉第的老师戴维,一个誉满全球、世界公认的大化学家在瑞士日内瓦养病时,有人问他一生中最伟大的发现是什么,他绝口不提自己发现的钠、钾、氯、氟等元素,却说: “我最伟大的发现是一个人,是法拉第!” 是的,戴维回答得好,重要的是人!下面就是这个学徒出身的大科学家在踏进科学大门之前,在坎坷的生活道路上向往科学、努力奋斗以及在进入科学殿堂之后建立丰碑的故事。 为了装备自己的小实验室,法拉第到药房里去拣别人扔掉的瓶子,花半个便士买一点最便宜的药品。他抱着拣来的、买来的东西,回到书店里的阁楼上,心里乐开了花。从此,每天下工以后,法拉第埋头在自己的小实验室里点上一支蜡烛,进行实验。 从13岁到21岁,法拉第在书店里当了8年学徒。这正是他长知识、长身体的时期。在将近3000个夜晚,法拉第把时间都用在读书和实验上了。 1791年9月22日,迈克尔.法拉第出生在一个铁匠的家里。他父亲体弱多病,铁匠铺开不下去了,最后只好盘给人家,自己去当帮工。为了维持生活,法拉第12岁当报童,13岁去里波先生的书店里当学徒,学装订手艺。从此,法拉第走上了生活的道路。 在里波先生的书店里,到处是书。这里是智慧的源泉,知识的海洋。法拉第象一块巨大的海绵,在知识的海洋里贪婪地吸吮着。劳动了一天以后,他在微弱的烛光下拼命地读书。书里讲的那些电的现象和化学实验,把法拉第迷住了。他渴望把书上讲的那些实验能做一遍,可是一个穷学徒哪来的钱买仪器和药品呢! 里波先生的书店在伦敦是很有名气的,加上法拉第手艺出众,态度和气,赢得了顾客的好感。因此,皇家学会很多会员,都乐意把自己的科技书籍送来装订。顾客中有位当斯先生很喜欢法拉第,有一次他送 给法拉第4张入场券,让他去皇家学院听大化学家戴维的讲座。 1812年2月的一个晚上,法拉第生平第一次跨进皇家学院的大门,坐在阶梯形的讲演厅里。他的心情紧张而又焦急。戴维终于出现了,大厅里响起一阵阵热烈的掌声。戴维讲的题目是发热发光物质,讲得那么轻松,却又那么透彻。他精神抖擞,神采奕奕,天才的光华和热力,似乎正从他的身上向外辐射。法拉第被深深地吸引住了,他飞快地记着,笔记本翻过一页又一页。 法拉第一连听了戴维的4次讲座,好像游历了美丽、庄严、圣洁的科学殿堂,那里阳光灿烂,照得他心里 光明、温暖。他把4次听讲的笔记仔细整理以后,用漂亮的皮封面装订成册。他经常轻轻地翻阅,多么渴望 能从事科学研究工作啊! 遗憾的是,在那个时代,命运对穷人从来不露出笑脸。它总是一副威严、狰狞的面孔,迫使你对它膜拜和 屈服。然而,也有许多穷人并不屈从,他们顽强地和命运搏斗。法拉第就是其中最顽强的一个。这个铁匠的儿子,从小爱看父亲挥舞大锤,一下一下地锻打烧红的铁块。铁块变冷变硬以后,父亲把它放在炉火里重新烧红。经过千锤百炼,铁坯终于按照人的意志变成各种工具。父亲曾经自豪地对他说:铁匠面前永远没有顽铁。多少年来,父亲的话一直激励着他。 于是,他决定写信给当时的英国皇家学会会长班克斯爵士,要求在皇家学院找个工作,哪怕在实验室里洗瓶子也行。他心神不宁地等了整整一个星期,音信全无。他忍不住跑到皇家学院去打听,得到的回音只是冷冰冰的一句话:“班克斯爵士说,你的信不必回复!” 受到这个屈辱的打击,法拉第感到伤心。但他毫不气馁。他想起自己学画的经历。法拉第从小就练得一手好字。至于绘画,他是从一个名叫马克里埃的法国画家那里学来的。那位曾经给拿破仑皇帝画过像,后来横渡英吉利海峡,流亡到伦敦的画家,恰好借住在里波先生铺子的楼上,和法拉第成了邻居。画家看到法拉第学画心切,答应教他。作为交换条件,法拉第要替画家擦皮靴和收拾房间。画家心眼不坏,教得也很 认真,可脾气不好,经常责骂法拉第。法拉第逆来顺受,坚持跟他学画,终于学会了投影和透视,能够逼真地、艺术地把眼前的东西画下来。从这段经历中,他体会到:只有忍辱负重,敢于向命运挑战,才能把本来不属于自己的东西追求到手。 法拉第又一次向命运挑战了。他鼓起勇气给戴维写信,并且把装订成册的戴维4次讲座的笔记一起送去。法拉第巨大的热情、超人的记忆和献身科学的精神,感动了这位大化学家。法拉第到皇家学院化学实验室当了戴维的助手。科学圣殿的大门向学陡出身的法拉弟打开了!

高中课本里涉及到的物理学史?

物理学史可以直接从名人入手,你看看高中有哪些闻名世界的物理学家,那么直接再看他的成就即可。从这一点上应该很好总结。手边没有高中物理书,只能为阁下提些建议了。

近几年的高考物理学史

1.2008年广东理科基础1、最早提出用电场线描述电场的物理学家是 ( )dyszplgA.牛顿 B.伽利略 C.法拉第 D.阿基米德答:Cdyszplg2.2001年上海卷9.请将右面三位科学家的姓名按历史年代先后顺序排列: 、 、 。任选其中二位科学家,简要写出他们在物理学上的主要贡献各一项: , 。答:伽利略,牛顿,爱因斯坦。伽利略:望远镜的早期发明,将实验方法引进物理学等;牛顿:发现运动定律,万有引力定律等;爱因斯坦:光电效应,相对论等。dyszplg3.2007年广东卷1、许多科学家在物理学发展过程中做出了重要贡献,下列表述正确的是 ( )A.卡文迪许测出引力常数B.法拉第发现电磁感应现象C.安培提出了磁场对运动电荷的作用力公式D.库仑总结并确认了真空中两个静止点电荷之间的相互作用规律dyszplg答:A B Ddyszplg4.2004年上海卷2.下列说法中正确的是 ( )A.玛丽u2022居里首先提出原子的核式结构学说.B.卢瑟福在α粒子散射实验中发现了电子.C.查德威克在原子核人工转变的实验中发现了中子.D.爱因斯坦为解释光电效应的实验规律提出了光子说.答:C D5.2005年上海卷6.2005年被联合国定为“世界物理年”,以表彰爱因斯坦对科学的贡献.爱因斯坦对物理学的贡献有 ( ) A.创立“相对论”, B.发现“X射线”,C.提出“光子说”, D.建立“原子核式模型”.答:A C6.2006年广东卷3、下列说法正确的是 ( )A.康普顿发现了电子B.卢瑟福提出了原子的核式结构模型C.贝史勒尔发现了铀和含铀矿物的天然放射现象D.伦琴发现了X射线 答:B C D7.2008年理综上海卷4、二十世纪初,为了研究物资内部的结构,物理学家做了大量的实验,揭示了原子内部的结构。发现了电子、中子和质子,右图是( )A.卢瑟福的α粒子散射实验装置B.卢瑟福发现质子的实验装置C.汤姆逊发现电子的实验装置D.查德威克发现中子的实验装置答:A8.2009年上海卷8.牛顿以天体之间普遍存在着引力为依据,运用严密的逻辑推理,建立了万有引力定律。在创建万有引力定律的过程中,牛顿( )A.接受了胡克等科学家关于“吸引力与两中心距离的平方成反比”的猜想B.根据地球上一切物体都以相同加速度下落的事实,得出物体受地球的引力与其质量成正比,即Fuf0b5m的结论C.根据Fuf0b5m和牛顿第三定律,分析了地、月间的引力关系,进而得出Fuf0b5m1m2D.根据大量实验数据得出了比例系数G的大小答:ABC解:题干要求“在创建万有引力定律的过程中”,牛顿只是接受了平方反比猜想,和物体受地球的引力与其质量成正比,即Fuf0b5m的结论,而提出万有引力定律后,后来利用卡文迪许扭称测量出万有引力常量G的大小,至于D项也是在建立万有引力定律后才进行的探索,因此符合题意的有ABC。9.2009年海南卷11.在下面括号内列举的科学家中,对发现和完善万有引力定律有贡献的是 。(安培、牛顿、焦耳、第谷、卡文迪许、麦克斯韦、开普勒、法拉第)答:第谷、开普勒、牛顿、卡文迪许解:第谷搜集记录天文观测资料、开普勒发现开普勒三定律、牛顿发现万有引力定律、卡文迪许测定万有引力常数10.2009年理综宁夏卷14. 在力学理论建立的过程中,有许多伟大的科学家做出了贡献。关于科学家和他们的贡献,下列说法正确的是 ( )A. 伽利略发现了行星运动的规律 B. 卡文迪许通过实验测出了引力常量 C.牛顿最早指出力不是维持物体运动的原因 D.笛卡尔对牛顿第一定律的建立做出了贡献 答:B D解:行星运动定律是开普勒发现的A错误;伽利略最早指出力不是维持物体运动的原因,C错误。11.2009年广东卷1.物理学的发展丰富了人类对物质世界的认识,推动了科学技术的创新和革命,促进了物质生产的繁荣与人类文明的进步。下列表述正确的是 ( )A.牛顿发现了万有引力定律 B.洛伦兹发现了电磁感应定律C.光电效应证实了的光的波动性 D.相对论的创立表明了经典力学已不再适用答:A解:电磁感应定律是法拉第发现的,B错误;光电效应证实了光的粒子性,C错误;相对论论和经典力学研究的领域不同,不能说相对论的创立表明经典力学已不再适用,D错误。正确答案选A。

什么是是物理学史研究的基础?

中国古代物理学史的研究是必须从一切古书中发掘史料的。中国古书没有标点符号,不同的断句读法,可以解释出不同的意义来;古汉语又是一字多义,一个字的不同解释,又可以阐发出迥异的内容。再加以古书,特别是一些笔记小说之类的书,记事往往不尽翔实,或以无作有,或以少作多,或张冠李戴,或添油加醋……因此,每每需要我们作一番鉴别的工作,要去伪存真,去芜存精。这项工作做不好,就得不到真实的史料。所以它是物理学史研究的基础。

物理学史的教育价值

关于物理学史的教育价值如下:物理学家在得出重大科学发现的同时,往往还总结出一整套科学研究的方法,如伽利略首先走上了用精确的数学分析和总结实验数据为特点的研究道路,在实验设计中运用了理想化方法,以可靠的事实为基础。经过抽象思维,抓住主要因素,化繁为简,揭示本质规律,牛顿则是头一位大量应用数学方法来系统地整理物理理论、用系统的数学方法对个别研究成果进行整理、组织,并使其由经验积累上升到理性概括,由零碎知识上升到系统理论的科学家。富兰克林、欧姆、法拉第和麦克斯韦则在建立单元电液理论、欧姆定律、电力线和电磁场理论的过程中,巧妙地应用了类比法。这些都是人类在认识自然界中所积索起来的宝贵财富。正如著名的数理学家拉普拉斯所指出的:"认识一种天才的研究方法,对于科学的进步....并不比发现本身更少用处。"因此,在物理教学中如果将物理学史中总结归纳出来的一系列思维方法介绍给学生,并为之掌握,这对于培养学生分析、处理和解决问题的能力,在学生进行创造性思维,探索新知识,摆脱"题海”困扰,减轻学习负担上都是很有帮助的。

物理学史

教师培训的题目

一篇3000字左右的物理学家故事或物理学史的读书(体会)报告

我高一四班。。。悲惨 谁找到了??????????????????????????????????????、

求关于物理学史的知识点

百度文库利多的是,不论是高中的还是初中的,还是大学的都有的,朋友。

高考物理学史有多少分

高考物理总分110分,生物90分,化学100分。

物理学史

百度百科

物理学史读后感

  物理学史读后感(一)   物理学史是人类对自然界中各种物理现象的认识史,它研究的是物理学发生、发展的规律,说明了物理学中的基本概念、定律和理论体系的酝酿、产生和发展的辩证过程。它是一座知识财富的宝库,不仅展示了物理学理论形成的前因后果、来龙去脉,而且深刻的揭示了物理学的研究方法;它也是一块精神财富的宝地,物理学的发展极大地改变着人们的自然观、世界观,升华了人们对人与自然,人与社会的认识。与此同时,物理学家在探求真理的过程中展现出的人格魅力,不畏艰险献身科学的高尚品格,也给后人增添了无穷的榜样力量。物理学不仅以其知识、方法和思想极大的促进了自身的发展,而且在更广阔的领域深刻的影响着人类文明的进程,成为人类文化的一部分。   学习物理学史就是为了了解物理学所走过的道路,它将有助于我们更深刻地认识物理学,更有效地应用和发展物理学。过去很多人总是在说以史为鉴,但我们认为对物理学史的学习仅仅以史为鉴还远不能满足时代的要求,更应该在以史为鉴的基础上以史为器去发展、去创新。物理学史和自然科学史告诉我们,历史上的一些发明、创造并不是前人研究内容的简单重复,而往往是前人研究方法、思维特征的重现,并且它更是螺旋形上升的。   在物理教学中适当引入物理学史教育,让学生更多的了解科学发展的历程,并从前人的经验中受到启发、教益,从而感悟科学方法,提升人文素养,培养创新意识,是素质教育全面发展观的基本要求,也是落实新课标三维目标的必然选择。   下面,从几个方面简述物理学史的作用:   一、感悟科学方法   物理学的发展史是一部物理学方法论的发展史,物理学在发展过程中,不仅产生了宝贵的理论成果,更留给后人值得深思的物理学的研究方法。物理发展的历史证明,每一次重大科学理论的突破,往往都伴随着新的科学方法的诞生,而新的科学方法又反过来促进物理学的发展。   力学是物理学中发展最早的一个分支,机械运动是力学中最直观、最简单、也是最便于观察因而也最早得到研究的一种运动形式。然而,和物理学的其他部门相比,力学的研究却经历了更为漫长的过程。从古希腊时代算起,这个过程几达二千年之久。只所以会如此漫长,一个很重要的原因就是人类缺乏经验,缺乏正确的科学研究方法,因而也就难以得出正确的科学结论。亚里士多德是古希腊时代人类历史上少数百科全书式的大哲学家,而且是通过观察自然,运用形而上学的哲学思想方法试图解释自然,奠定物理学思想萌芽的人。然而,由于历史的局限,亚里士多德对自然的研究仅仅停留在观察和思辩的层面上,致使像力是维持物体物运动的原因,重的物体下落得快,轻的物体下落得慢等错误长期统治着人们的思想。   但是,伽利略没有仅仅停留在逻辑思辩上,而是继续做了斜面实验。他发现,落体的速度越来越快,是一种匀加速运动,而且加速度与重量无关;他还发现,斜面越陡,加速度越大,斜面越平,则加速度越小,在极限情况下,斜面垂直,相当于自由下落,不同物体的加速度是一样的。当斜面完全水平时,加速度为零,这时,一个运动着的物体就应该是沿直线永远运动下去。斜面实验表明,物体运动的保持并不需要外力,需要外力的是物体运动的改变。伽俐略最终用理想实验由斜面的情形推到自由落体和水平运动的情形。   伽俐略逻辑推理与实验验证相结合的思维方式,为后人找到了研究物理的正确科学方法。从此,一门博大精深的科学已经出现(伽俐略语),物理从此从哲学中分离出来并得以迅速发展。纵观物理学三百余年的发展史,可以看出,实验在检验已知理论,探索未知规律等方面起到了不可替代的作用。早在1687年,牛顿在其出版的《自然哲学的数学原理》一书中就已经正式提出了万有引力定律,可直到一百多年后的1798年,英国科学家卡文笛许利用扭称这一巧妙的实验装置测出引力常数后,万有引力定律才得以全面的展示在世人面前;麦克斯韦对电磁波理论进行了长达十年的研究,并以一组简洁的数学方程把电磁波理论概括得十分优美对称,但当年却难以令人信服,直到二十多年后他预言的电磁波被赫兹的实验所证实,他的学说才成为举世公认的电磁理论基础;1905年,爱因斯坦用光电子假说总结了光的微粒说和波动说之间长期的争论,能很好的解释光电效应的实验结果,但是直到1916年,当密立根以其严密的实验全面地证实了爱因斯坦的光电方程后,光的粒子性才被人们所接受……可以说:实验,只有实验,才是物理学的基础。   将物理学史引入课堂,不仅能使学生有身临其境之感,而且能领略前辈大师的研究方法,得其精髓,有所借鉴。   二、提升人文素养   物理学史是一部人文史,物理学家们在从事科学活动的过程中,不仅揭示了自然界基本运动形式的诸多真理,同时也为后人树立了一座座道德丰碑。科学家们在探索自然的过程中展现出的人格魅力、人文素养,对科学事业的执着追求精神,都会使学生的情感升华,对引导学生确立正确的人生观和价值观,实现人格的完美化具有积极的促进作用。牛顿是经典物理的奠基人,但他却谦称自己站在巨人的肩膀上;居里夫妇是镭元素的发现者,然而他们却没有居功自傲,镭只是一种元素,它属于世界所有,科学应当为大众服务,它应当属于全人类。她说过的这句话一定会给学生留下深刻的印象   物理学史也是一部美学史,对称、和谐、统一等美学要素在物理学的发展中起着非常重要的文化导向作用。当先人们对天体的运动还充满着神秘与未知时,却能直观的感受到其运动轨道应该是圆周,因为圆是美的。物理之美是直观的,比如彩虹是极美的表面现象,人人都可以看到;物理之美也是深刻的,电荷之间的引力与物体之间的万有引力都遵循平方反比率,电子绕核运动的模型和星体之间的模型相仿等等无一不显示着物理学深刻的统一美。   物理学是一门与自然、生活、技术进步和社会发展有着最广泛联系的科学。它可以揭开大千世界的奥秘,使学生志向高远,憧憬未来,本应该是学生最为钟情的一门课程。然而,有时它竟成为学生最为头疼和恐惧的课程。这不能不说是单一课程目标与僵化教学模式的一个苦果,我们有理由相信,充分重视物理课程中的人文素养资源,坚持三维课程目标,就一定能够焕发物理课程的魅力。   三、培养创新意识   物理学的发展史本身就是怀疑、批判、求真、创新的发展史。通过物理学史的教学展现物理学发展的历程, 展现在这个历程中,物理学家们对真理的追求,不同理论观点的冲突、纷争与批判,有助于培养学生的怀疑和批判精神。而怀疑和批判精神对于科学发展是不可或缺的,是创新意识和创新能力的重要特征。   从亚里士多德力是维持物体运动的原因到牛顿惯性是物体的根本属性;从牛顿的绝对时空观到爱因斯坦的广义相对论;从热质说到能量说;从光的微粒说、波动说到波粒二象性和光子说,物理学史展现的.知识是一种动态的、变化的知识,呈现出人类对物理现象的认识不断深化的过程。这种过程既突显了科学家们不迷信权威,不迷信书本,敢于怀疑的创新精神,同时也隐喻着人类对自然的认识是无止境的,从而深刻的促进着人们的思想解放。   19世纪末,物理学已经有了相当的发展,几个主要部门——力学、热学、电磁学以及光学,都已经建立了完整的理论体系,在应用上也取得了巨大的成果。这时一部分物理学家认为,物理学已经发展到顶,伟大的发现不会再有了,以后的任务无非是在细节上作些补充和修正,使常数测得更精确而已。然而,也正是这个时候,伦琴发现了X射线,并导致了电子的发现。X射线一旦发现,立即取得了广泛的应用,迅速打破了物理学界沉闷的空气,极大的促进着人们思想的解放,带来了一场深刻的物理学革命,把人们的注意力引向更深入、更广阔的天地,从而揭开了现代物理学革命的序幕。   物理课程不应该把人类认识自然的历史擦去,不能被公式和逻辑的面纱掩盖。把动态的、进化的物理学理论异化为机械的公式、定律,繁、难、偏、旧的习题呈现给学生,在传统教学中是司空见惯的。其结果必将使学生对原本不断深化的物理学理论教条化、神圣化,不自觉地剥夺了学生的怀疑精神、批判精神,丧失培养学生创新能力的极好机会,模糊了物理学习的最终目的。   现有的物理知识,都是人类与物理世界的长期对话中,经过无数的曲折与反复,进行抽象概括而获得的。只有考察物理学的过去,才能理解它的现状,把握它的未来,对物理学史相关知识的探究,必将潜移默化地提升学生的科学素养和人文素养,对学生的全面发展起到积极的促进作用。   物理学史读后感(二)   物理学是研究物质及其行为和运动的科学,是最早的自然学科之一。物理学的发展是很久远的,自古以来时间最长的也就是物理学中最基本的,也是最重要的部分,经典物理学,其主要研究的方面是力学,光学和天文学的研究。也正是这些方面,让物理学家们探索了相当长的时间,从人类的文明开始,人们就开始关注世界上事物的发展,从刚开始的额懵懂,到逐渐的了解,这其中有着怎么样坎坷曲折的道路,无数次的错误,无数的物理学家为之奋斗终身,献出自己的青春年华,为的就是获取真理。   没有探索就没有发现,没有大胆的打破传统的思想,就不会有新的理论的诞生,或者是对旧的理论的改正,正如伽利略一样,正是打破了传统的思维,敢于挑战人们所信奉的真理,才使得他获得了真理,站在了物理学的巅峰之上。自古,亚里士多德的理论就一直被人们信奉为真理,他提出:重的物体和清的物体下落的速度是一样的。这被人们当做真理传承了号几个世纪,可是,当伽利略通过大量的实验证明着是个错误的时候,他勇敢的提出来了,通过比萨斜塔的实验,他向世人证明了自己的正确,证明了本有的真理,打破了巩固人们思想的错误理论。   科学的发展是很漫长的,其中,也是要付出许多沉痛的代价的,在宗教的束缚下,在上帝与地心说的统治之下,哥白尼和布鲁诺是何等的不畏权势,勇敢而大胆的相信自己的真理,并不断的向人们宣示这真理,在被宗教迫害,逼迫其放弃自己的真理而服从宗教的通知的时候,他们毅然拒绝,终为自己所信奉的真理献出了自己的生命,可是日心说在后代终于还是被证明是正确的,从而被世人所接受。   发展的事物总是那么的坎坷,可是科学的探索是没有尽头的,在经典物理以后,继而发展起来的就是爱因斯坦的相对论和现在人们经常耳边能听说到的原子物理学,这时的发展也是一样那么的不顺利,在爱因斯坦提出相对论之后很长的一段时间人们总是不相信爱因斯坦在相对论中所描述的时间和空间的关系,可是,不管刚开始人们是一种怎么样的心态,最红人们所接受的都必须是真理的,因为没有任何食物可以战胜得过真理。但是真理的诞生却是要靠我们很多人的奋斗才能产生的。   物理学史读后感(三)   物理学作为一门科学意味着能够更多的创造出人们所需要的物质财富,对社会发展的积极作用。   在我看来,要想完整表达物理学史对我们学习的要求,应做到以下几点:   1、通过物理学史的学习,激发学生的学习兴趣。   有句话说得好,兴趣是最好的老师。当你带着兴趣去学某样东西的时候,可以达到事半功倍的效果。物理学史记载人类揭开世界奥秘和令人兴奋的探索历程。不论是否喜欢历史,大多数人都是喜欢听故事的,因为孩子最早的认知就是从故事中体味和形成的。以故事的形式讲历史学生更易接受。   2、通过物理学史的学习,培养观察和分析问题能力。   物理学是一门以实验为基础的科学,观察和实验既是研究物理学的基本方法,也是学习物理的基本方法。物理学史中描述许多科学家善于从不被注意的一些平常现象中细心地观察与思考的事例。比如伦琴一生在物理学领域中进行过大量实验研究工作,一次实验中,他偶然发现包有黒纸的底片被曝光,但他从没放弃过着一个细小现象。正是他从这种观察能力、分析能力使他发现X射线从而获得诺贝尔奖。学生在了解物理学史知识的过程中便可认识到注意观察和认真进行实验是学好物理学的关键。因此在今后的学习中要有意识的观察,亲自动手实验,逐步培养勤观察、勤思考的习惯,这种能力的培养在今后的工作中将受益无穷。   3、通过物理学史的学习,培养质疑精神和提出科学问题的能力。   独立思考和独立判断的能力,首先表现在怀疑和批判的精神。科学史上大量实例表明,不囿于传统理论和观念,还迷信权威和书本,是科学创造的思想前提。众所周知,在爱因斯坦之前,洛伦兹和彭加勒已经走到相对论的大门口,只是由于未能摆脱绝对时空观的束缚,才没有最终迈进相对论的门槛。正是由于爱因斯坦抛开了绝对运动和静止以太的观念,并深刻地审查了同时性概念的物理学根据,才创建了狭义相对论,引起了人类时空观的巨大变革。   4、通过学习物理学史,学习物理大师的科学方法和进行科学思维的训练。   物理学研究中建立了许多理想模型,理想过程、理想实验、运用了观察和实验,类比和联想,猜测和试探分析和综合,佯谬和反证方法,科学假设方法等等,物理学史中有大量的生动事例说明科学大师们熟练而巧妙地运用这些方法取得重要成果的过程。利用这些事例,可以对学生进行具体的科学方法的教育。比如讲自由落体运动时,介绍伽利略用归谬法驳斥亚里士多德重的物体比轻的物体落得快。伽利略指出:如果从塔上落下来两个同体积的球,其中之一不另一个重一倍,按亚里士多德的理论重的不轻的快一倍。如果将两球绑在一起,重量之和大于重球,下落速度应该比重球快。但如果两球是独立的,他们应该比轻球快,比重球慢。一件事情却出现两种结果,证明理论有误。爱因斯坦在创立相对论过程中,设法用真实实验来说明,设想了大量的理想实验,理想模型,成为物理学史中的一朵奇葩。   5、通过物理学史的学习,服务于物理知识的掌握。   任何理论的建立都不是某个人突发奇想而出现的。都有其发生、发展、成熟的过程。有的需要一个人一生甚至几代人的努力才能完善一套理论。1687年,牛顿发表了《自然哲学之数学原理》,这部巨着总结了力学的研究成果,标志了经典力学体系初步建立。这是物理学史上第一次大综合,是天文学、数学和力学历史发展的产物,也是牛顿创造性研究的结晶。但是这些成就并不能只归功于牛顿一人,因为在牛顿之前就有很多科学家在这方面做过大量有成就的研究,并取得大量成果,这位牛顿的研究打下了坚实的理论和资料方面的基础。牛顿在一封给胡克的信中写道如果我看得更远,那是因为站在巨人的肩上。人们通常认为他指出的巨人是伽利略和开普勒。其实他完成的综合工作是基于从中世纪以来世世代代从事科学研究的前人的累累成果。   6、通过物理学史的学习,培养科学精神。   所有的科学家,都不能脱离他所在社会,他首先是一个社会人,然后他才是一个科学家。科学技术像一把双刃剑,既能通过促进经济和社会发展以造福于人类,同时也可能在一定条件下对人类的生存和发展带来消极后果。   遥想两千三百多年前,亚里士多德提出物理学的概念以来,物理学真是历尽荣辱兴衰,但最终冲破了神学的桎梏。在科学的海边探望的孩子牛顿,奠定了物理学的基础,三百多年来,物理学已发展成为一门以人类进步、社会发展休戚相关的学科。物理学作为一门最基础的自然科学,它的发展动力是深深地植根于人类对真理的非功利追求上,正是这种非功利的追求给人类带来最大的收益。它的发展从来就对人类社会思想、文化发生巨大影响。人类社会进步的一个主要动力便是科学精神,现代科学精神的典范和集中的反映就是现代物理学。以现代物理学为代表的科学精神,是人类进步的一面旗帜,它将高高飘扬在未来的岁月中。而我们要做的就是学习科学家的优良品质,刻苦学习,向科学的高峰勇敢地攀登。

高中物理学史(详细)

你懂得

从物理学史角度分析动量为什么以p=mv的形式来表达

【摘要】:正 笔者在高中物理教学过程中教"动量和冲量"时,有一位学生问到这么一个问题:为什么要引入动量这个物理量?动量为什么是p=mv?可不可以是P=(mv)~2、p=(mv)~3?等等。这是一个很有思想的学生,而且这个问题也很有意思,但要讲清楚却不是一件容易的事。为什么要引入动量这个物理量?教师可能会引用教科书中对动量的引入的话来回答学生:前面学习了牛顿运动定律,但是对碰撞、打击一些变力问题在高中阶段有困难,所以物理学家引入动量的概念,为解决这一类问题开辟一条新途径。好像动量的引入是为了解决这类问题而引入的,但从物理学史角度看"动量"这个物理量的引入的真正意思当然不是仅仅为了解决这类问题。也有可能会用这句话回答:动量是描述运动物体的运动状态的,但是

有哪位帮忙去整理一下高中物理的物理学史考点啊!!

一、力学:1.1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体不会比轻物体下落得快;他研究自由落体运动程序如下:提出假说:自由落体运动是一种对时间均匀变化的最简单的变速运动;数学推理:由初速度为零、末速度为v的匀变速运动平均速度 和 得出 ;再应用 从上式中消去v,导出 即 。实验验证:由于自由落体下落的时间太短,直接验证有困难,伽利略用铜球在阻力很小的斜面上滚下,上百次实验表明: ;换用不同质量的小球沿同一斜面运动,位移与时间平方的比值不变,说明不同质量的小球沿同一斜面做匀变速直线运动的情况相同;不断增大斜面倾角,重复上述实验,得出该比值随斜面倾角的增大而增大,说明小球做匀变速运动的加速度随斜面倾角的增大而变大。合理外推:把结论外推到斜面倾角为90°的情况,小球的运动成为自由落体,伽利略认为这时小球仍保持匀变速运动的性质。(用外推法得出的结论不一定都正确,还需经过实验验证)注:伽利略对自由落体的研究,开创了研究自然规律的一种科学方法。(回忆理想斜面实验)2.1683年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律。3.17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。4.20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。5.17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星。6.我国宋朝发明的火箭与现代火箭原理相同,但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。7.17世纪荷兰物理学家惠更斯确定了单摆的周期公式。周期是2s的单摆叫秒摆。8.奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。(相互接近,f增大;相互远离,f减少)二、热学:1.1827年英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。2.19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。3.1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。4.1848年 开尔文提出热力学温标,指出绝对零度(-273.15℃)是温度的下限。T=t+273.15K 热力学第三定律:热力学零度不可达到。三、电磁学:1.1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。(转化)2.1752年,富兰克林在费城通过风筝实验验证闪电是电的一种形式,把天电与地电统一起来,并发明避雷针。3.1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。4.1911年荷兰科学家昂尼斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。5.1841~1842年 焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律。6.1820年,丹麦物理学家奥斯特发现电流可以使周围的磁针偏转的效应,称为电流的磁效应。安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥;同时提出了安培分子电流假说。荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。7.汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。1932年美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径。带电粒子圆周运动周期与高频电源的周期相同;但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显著增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难。8.1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应现象;1834年楞次发表确定感应电流方向的定律。9.1832年亨利发现自感现象,即在研究感应电流的同时,发现因电流变化而在电路本身引起感应电动势的现象。日光灯的工作原理即为其应用之一。双绕线法制精密电阻为消除其影响应用之一。10.1864年英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场的基本方程组,后称为麦克斯韦方程组,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。电磁波是一种横波(注意第二册P243的图)。1887年德国物理学家赫兹用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。四、光学:1.公元前468-前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。2.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。(注意其测量方法)3.1621年荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。4.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒;另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。这两种学说都不能解释当时观察到的全部光现象。1801年,英国物理学家托马斯u2022杨成功地观察到了光的干涉现象1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑。1864年英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波,1887年由赫兹证实。1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。1900年,德国物理学家普朗克为解释物体热辐射规律提出电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律。(量子力学的说明在第三册P56)1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。(说明动量守恒定律和能量守恒定律同时适用于微观粒子)光具有波粒二象性,光是电磁波、概率波、横波(光的偏振说明光是一种横波)。光的电磁说中要注意电磁波谱(第三册P31),还要注意原子光谱(涉及光谱分析第三册P50)5.1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。(明确其局限性)6.1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;1927年美英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。(第三册P54)五、原子物理学:1.1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。2.1909年-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m 。3.1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核也有复杂的内部结构。天然放射现象有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变的快慢(半衰期)与原子所处的物理和化学状态无关。4.1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。5.1939年12月德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。1942年 在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。6.1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是利用强激光产生的高压照射小颗粒核燃料。7.现代粒子物理:1932年发现了正电子,1964年提出夸克模型;粒子分为三大类:媒介子,传递各种相互作用的粒子如光子; 轻子,不参与强相互作用的粒子如电子、中微子; 强子,参与强相互作用的粒子如质子、中子;强子由更基本的粒子夸克组成,夸克带电量可能为元电荷.

物理学史的介绍

本书介绍物理学发展的历史,着重讲述物理学基本概念、基本定律和各主要分支的形成过程,特别侧重现代物理学的发展史。

简单阐述世界近代物理学史的发展和当今物理学发展的前沿问题?(不少于1000字)

找一本《物理学史》,把最后两三章摘抄一下就行了

求物理学史

中国物理学史》分为三编。上编,对比编,着重介绍中国悠久历史文化中有关物理知识的内容,采用与以古希腊为主的西方有关论述进行对比的方法,论证中国古人并不比西方人差,没必要“言必称希腊”,并对古代中国科技为何先进,后来又为何落后的原因进行剖析,留给今人做思考。中编,认知编,介绍经典物理在中国的传播、发展,中国物理学会的成立与活动,物理学人对物理科学的贡献,包括以中国人命名的物理学公式、定律、定义,重点介绍改革开放后物理学各个领域的前沿发展态势及重要成果。下编,争鸣编,介绍21世纪以来,非主流派学者提出的物理新概念、新观点、新理论,虽尚未成熟,但体现了创新,闪现了思想之火花,希望给读者一些启迪。书名中国物理学史出版社湖南大学出版社页数190页开本16作者舒恒杞更多基本介绍内容简介《中国物理学史》是从物理学史这个角度进行爱国主义教育的教材。适合从事相关研究工作的人员参考阅读。作者简介舒恒杞,1940年2月出生,湖南溆浦人。怀化学院物信系退休副教授。原中国物理学会会员,中国近代物理研究会师专分会理事会理事,《探索》、《北京相对论研究动态》编委。个人业绩曾被载入《溆浦名人》、《世界优秀专家人才名典》等书中,编著《电磁学》、《高能物理发展年史》等教材,主编《湖南省师专原子物理学标准化试题库》,参与“创新专业综合理科新教材”中的《物质结构》一书的编写,并获高教部“高师理科一体化理论与实践”二等奖。主要学术论文有《场是怎样传递相互作用的》《微观粒子新的分类表》《略论反物质》《核外电子排布的关键》《东西方古代对电和磁现象认识的对比》等20余篇,并对大、中学生进行过20余次前沿科普专题讲座。历经二十余年的辛勤耕耘,查阅大量文献资料,多方求证,终于在古稀之年编著出《中国物理学史》。

物理学史上的两朵乌云指的是什么

19世纪的最后一天,欧洲著名的科学家欢聚一堂。会上,英国著名物理学家威廉.汤姆生(即开尔文男爵)发表了新年祝词。他在回顾物理学所取得的伟大成就时说,物理大厦已经落成,所剩只是一些修饰工作。同时,他在展望20世纪物理学前景时,却若有所思地讲道:“动力理论肯定了热和光是运动的两种方式,现在,它的美丽而晴朗的天空却被两朵乌云笼罩了,”“第一朵乌云出现在光的波动理论上,”“第二朵乌云出现在关于能量均分的麦克斯韦-玻尔兹曼理论上。威廉.汤姆生在1900年4月曾发表过题为《19世纪热和光的动力学理论上空的乌云》的文章。他所说的第一朵乌云,主要是指迈克尔逊-莫雷实验结果和以太漂移说相矛盾;他所说的第二朵乌云,主要是指热学中的能量均分定则在气体比热以及热辐射能谱的理论解释中得出与实验不等的结果,其中尤以黑体辐射理论出现的“紫外灾难”最为突出。开尔文是19世纪英国杰出的理论物理和实验物理学家,是一位颇有影响的物理学权威,他的说法道出了物理学发展到19世纪末期的基本状况,反映了当时物理学界的主要思潮。物理学发展到19世纪末期,可以说是达到相当完美、相当成熟的程度。一切物理现象似乎都能够从相应的理论中得到满意的回答。例如,一切力学现象原则上都能够从经典力学得到解释,牛顿力学以及分析力学已成为解决力学问题的有效的工具。对于电磁现象的分析,已形成麦克斯韦电磁场理论,这是电磁场统一理论,这种理论还可用来阐述波动光学的基本问题。至于热现象,也已经有了唯象热力学和统计力学的理论,它们对于物质热运动的宏观规律和分子热运动的微观统计规律,几乎都能够做出合理的说明。总之,以经典力学、经典电磁场理论和经典统计力学为三大支柱的经典物理大厦已经建成,而且基础牢固,宏伟壮观!在这种形势下,难怪物理学家会感到陶醉,会感到物理学已大功告成,因而断言往后难有作为了。这种思想当时在物理界不但普遍存在,而且由来已久。普朗克曾在1924年做过一次演讲。在演讲中,他回忆1875年在慕尼黑大学学物理时,物理老师P.约里(1809-1884)曾劝他不要学纯理论,因为物理学“是一门高度发展的、几乎是臻善臻美的科学”,现在这门科学“看来很接近于采取最稳定的形式。也许,在某个角落里还有一粒尘屑或一个小气泡,对它们可以去进行研究和分类,但是,作为一个完整的体系,那是建立得足够牢固的。而理论物理学正在明显地接近于几何学在数百年中所已具有的那样完美的程度。”普朗克的另一位名师,柏林大学的G?基尔霍夫(1824-1887)也说过类似的话,他说“物理学已经无所作为,往后无非在已知规律的小数点后面加上几个数字而已。”尽管开尔文对物理学成就的评价言之过激,但他能够在此万里晴空中发现“两朵乌云”并为之忧心忡忡,足见他富有远见。物理学发展的历史表明,正是这两朵小小的乌云,终于酿成了一场大风暴。

推荐一本关于物理学史的书

他们说的都不错,建议房主买来看,或者报个班学习物理。我就只推荐一下史蒂芬霍金的《时间简史》。可以很好的丰富你的知识。有科普版。你也可以看看其它他写的书,都很棒。这样对于以后的学习有很大的好处。我是真心这样说的。不为赚分。我特别特别特别推荐房主多看课外书。丰富知识。我就后悔没多看书,所以,现在要多看书。学习物理其实真的可以报一对一来学习。但课外知识就要看你积累了。多看书才有知识啊!你以为诸葛亮天生聪明?智者都是多看书才来的啊。纯手写,希望能帮到你谢谢

物理学史属于科学史?

是啊

高中物理学史

请问你这个问题是想问什么?是别人学习物理的经历?还是怎么学习高中物理?

《物理学史》

●伽利略·伽利雷(1564年-1642年)人类现代物理学的创始人,奠定了人类现代物理科学的发展基础。● 1900-1926年 建立了量子力学。● 1926年 建立了费米狄拉克统计。● 1927年 建立了布洛赫波的理论。● 1928年 索末菲提出能带的猜想。● 1929年 派尔斯提出禁带、空穴的概念,同年贝特提出了费米面的概念。● 1947年贝尔实验室的巴丁、布拉顿和肖克莱发明了晶体管,标志着信息时代的开始。● 1957年 皮帕得测量了第一个费米面超晶格材料纳米材料光子。● 1958年杰克.基尔比发明了集成电路。● 20世纪70年代出现了大规模集成电路。物理与物理技术的关系:● 热机的发明和使用,提供了第一种模式:技术—— 物理—— 技术● 电气化的进程,提供了第二种模式:物理—— 技术—— 物理当今物理学和科学技术的关系两种模式并存,相互交叉,相互促进“没有昨日的基础科学就没有今日的技术革命”。例如:核能的利用、激光器的产生、层析成像技术(CT)、超导电子技术、粒子散射实验、X 射线的发现、受激辐射理论、低温超导微观理论、电子计算机的诞生。几乎所有的重大新(高)技术领域的创立,事先都在物理学中经过长期的酝酿。物理学的方法和科学态度:提出命题 → 理论解释 → 理论预言 → 实验验证 →修改理论。现代物理学是一门理论和实验高度结合的精确科学,它的产生过程如下:①物理命题一般是从新的观测事实或实验事实中提炼出来,或从已有原理中推演出来;②首先尝试用已知理论对命题作解释、逻辑推理和数学演算。如现有理论不能完美解释,需修改原有模型或提出全新的理论模型;④新理论模型必须提出预言,并且预言能够为实验所证实;⑤一切物理理论最终都要以观测或实验事实为准则,当一个理论与实验事实不符时,它就面临着被修改或被推翻。● 怎样学习物理学?著名物理学家费曼说:科学是一种方法,它教导人们:一些事物是怎样被了解的,什么事情是已知的,了解到了什么程度,如何对待疑问和不确定性,证据服从什么法则;如何思考事物,做出判断,如何区别真伪和表面现象?著名物理学家爱因斯坦说:发展独立思考和独立判断的一般能力,应当始终放在首位,而不应当把专业知识放在首位.如果一个人掌握了他的学科的基础理论,并且学会了独立思考和工作,他必定会找到自己的道路,而且比起那种主要以获得细节知识为其培训内容的人来,他一定会更好地适应进步和变化 。● 学习的观点:从整体上逻辑地,协调地学习物理学,了解物理学中各个分支之间的相互联系。● 物理学的本质:物理学并不研究自然界现象的机制(或者根本不能研究),我们只能在某些现象中感受自然界的规则,并试图以这些规则来解释自然界所发生任何的事情。我们有限的智力总试图在理解自然,并试图改变自然,这是物理学,甚至是所有自然科学共同追求的目标。以物理学为基础的相关科学:化学,天文学,自然地理学等。

物理学史总结

高中物理学史专题★伽利略(意大利物理学家)对物理学的贡献:①发现摆的等时性②物体下落过程中的运动情况与物体的质量无关③伽利略的理想斜面实验:将实验与逻辑推理结合在一起探究科学真理的方法为物理学的研究开创了新的一页(发现了物体具有惯性,同时也说明了力是改变物体运动状态的原因,而不是使物体运动的原因)经典题目伽利略根据实验证实了力是使物体运动的原因(错)伽利略认为力是维持物体运动的原因(错)伽俐略首先将物理实验事实和逻辑推理(包括数学推理)和谐地结合起来(对)伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去(对)★胡克(英国物理学家)对物理学的贡献:胡克定律经典题目胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)★牛顿(英国物理学家)对物理学的贡献①牛顿在伽利略、笛卡儿、开普勒、惠更斯等人研究的基础上,采用归纳与演绎、综合与分析的方法,总结出一套普遍适用的力学运动规律——牛顿运动定律和万有引力定律,建立了完整的经典力学(也称牛顿力学或古典力学)体系,物理学从此成为一门成熟的自然科学②经典力学的建立标志着近代自然科学的诞生经典题目牛顿发现了万有引力,并总结得出了万有引力定律,卡文迪许用实验测出了引力常数(对)牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动(对)牛顿提出的万有引力定律奠定了天体力学的基础(对)★卡文迪许贡献:测量了万有引力常量典型题目牛顿第一次通过实验测出了万有引力常量(错)卡文迪许巧妙地利用扭秤装置,第一次在实验室里测出了万有引力常量的数值(对)★亚里士多德(古希腊)观点:①重的物理下落得比轻的物体快②力是维持物体运动的原因经典题目亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动(对)★开普勒(德国天文学家)对物理学的贡献 开普勒三定律经典题目开普勒发现了万有引力定律和行星运动规律(错)托勒密(古希腊科学家)观点:发展和完善了地心说哥白尼(波兰天文学家) 观点:日心说第谷(丹麦天文学家) 贡献:测量天体的运动威廉·赫歇耳(英国天文学家)贡献:用望远镜发现了太阳系的第七颗行星——天王星汤苞(美国天文学家)贡献:用“计算、预测、观察和照相”的方法发现了太阳系第九颗行星——冥王星泰勒斯(古希腊)贡献:发现毛皮摩擦过的琥珀能吸引羽毛、头发等轻小物体★库仑(法国物理学家)贡献:发现了库仑定律——标志着电学的研究从定性走向定量典型题目库仑总结并确认了真空中两个静止点电荷之间的相互作用(对)库仑发现了电流的磁效应(错)富兰克林(美国物理学家)贡献:①对当时的电学知识(如电的产生、转移、感应、存储等)作了比较系统的整理②统一了天电和地电密立根 贡献:密立根油滴实验——测定元电荷昂纳斯(荷兰物理学家) 发现超导欧姆: 贡献:欧姆定律(部分电路、闭合电路)★奥斯特(丹麦物理学家)电流的磁效应(电流能够产生磁场)经典题目奥斯特最早发现电流周围存在磁场(对)法拉第根据小磁针在通电导线周围的偏转而发现了电流的磁效应(错)★法拉第贡献:①用电场线的方法表示电场②发现了电磁感应现象③发现了法拉第电磁感应定律(E=n△Φ/△t)经典题目奥斯特发现了电流的磁效应,法拉第发现了电磁感应现象(对)法拉第发现了磁场产生电流的条件和规律(对)奥斯特对电磁感应现象的研究,将人类带入了电气化时代(错)法拉第发现了磁生电的方法和规律(对)★安培(法国物理学家)①磁场对电流可以产生作用力(安培力),并且总结出了这一作用力遵循的规律②安培分子电流假说经典题目安培最早发现了磁场能对电流产生作用(对)安培提出了磁场对运动电荷的作用力公式(错)狄拉克(英国物理学家)贡献:预言磁单极必定存在(至今都没有发现)★洛伦兹(荷兰物理学家)贡献:1895年发表了磁场对运动电荷的作用力公式(洛伦兹力)阿斯顿贡献:①发现了质谱仪 ②发现非放射性元素的同位素劳伦斯(美国) 发现了回旋加速器★楞次 发现了楞次定律(判断感应电流的方向)★汤姆生(英国物理学家)贡献:①发现了电子(揭示了原子具有复杂的结构)②建立了原子的模型——枣糕模型经典题目汤姆生通过对阴极射线的研究发现了电子(对)★卢瑟福(英国物理学家)指导助手进行了α粒子散射实验(记住实验现象)提出了原子的核式结构(记住内容)发现了质子经典题目汤姆生提出原子的核式结构学说,后来卢瑟福用粒子散射实验给予了验证(错)卢瑟福的原子核式结构学说成功地解释了氢原子的发光现象(错)卢瑟福的a粒子散射实验可以估算原子核的大小(对)卢瑟福通过对α粒子散射实验的研究,揭示了原子核的组成(对)★波尔(丹麦物理学家)贡献:波尔原子模型(很好的解释了氢原子光谱)经典题目玻尔把普朗克的量子理论运用于原子系统上,成功解释了氢原子光谱规律(对)玻尔理论是依据a粒子散射实验分析得出的(错)玻尔氢原子能级理论的局限性是保留了过多的经典物理理论(对)★贝克勒尔(法国物理学家)发现天然放射现象(揭示了原子核具有复杂结构)经典题目天然放射性是贝克勒尔最先发现的(对)贝克勒尔通过对天然放射现象的研究发现了原子的核式结构(错)★伦琴 贡献:发现了伦琴射线(X射线)★查德威克 贡献:发现了中子★约里奥·居里和伊丽芙·居里夫妇①发现了放射性同位素②发现了正电子经典题目居里夫妇用α粒子轰击铝箔时发现电子(错)约里奥·居里夫妇用α粒子轰击铝箔时发现正电子(对)★普朗克 贡献:量子论★爱因斯坦贡献:①用光子说解释了光电效应②相对论经典题目爱因斯坦提出了量子理论,普朗克提出了光子说(错)爱因斯坦用光子说很好地解释了光电效应(对)是爱因斯坦发现了光电效应现象,普朗克为了解释光电效应的规律,提出了光子说(错)爱因斯坦创立了举世瞩目的相对论,为人类利用核能奠定了理论基础;普朗克提出了光子说,深刻地揭示了微观世界的不连续现象(错)★麦克斯韦贡献:①建立了完整的电磁理论②预言了电磁波的存在,并且认为光是一种电磁波(赫兹通过实验证实电磁波的存在)经典题目普朗克在前人研究电磁感应的基础上建立了完整的电磁理论(对)麦克斯韦从理论上预言了电磁波的存在,赫兹用实验方法给予了证实(对)麦克斯韦通过实验证实了电磁波的存在(错)

象征主义在法国文学史上处于什么地位?

1857年,法国年轻诗人波德莱尔发表的《恶之花》是象征主义的开山之作。《恶之花》象怪物似的出现在法国诗坛上,成为法国文学,乃至世界文学史上一件令人瞩目的大事。波德莱尔成为文坛泰斗后,以他为中心的一种新的文学流派也迅速形成。而且,由于他的重要追随者魏尔伦、兰波和玛拉美的出现,这个新的流派在19世末;即1886—1891年左右达到昌盛时期。如果、再细看一下,前期象征主义又可以分为3个阶段:波德莱尔以前为萌芽期象征主义。这个时期里,有法国第一散文诗人贝尔特朗;散文家奈瓦尔、诗人洛特雷亚蒙和美国著名诗人和作家爱伦·坡。他俩的诗和诗歌理论都曾对波德莱尔以及后来的一大批象征派诗人的创作发生过作用,但还算不上真正的"象征主义诗歌。第二个阶段是波德莱尔时期。波德莱尔不但是象征主义的鼻祖;也是整个现代派文学的先驱,我们把他这一个阶段称为先驱期象征主义。第三个阶段是继波德莱尔之后出朝的3个重要诗人:兰波、魏尔伦、玛拉美时期。我们称这个时期为正统的前期象征主义时期。由于他们3个人的努力,象征主义到19世纪末出现了前所未有的热潮。法国的拉弗格、歇尼埃和上面提到的莫雷亚斯等诗人都先后加入到象征主义行列。用象征主义手法创作了大量诗歌,形成了一种要淹没已基本解体的浪漫主义的声势和与还在流行的帕尔纳斯派相对抗的格局。19世纪90年代后,象征主义诗歌又开始向西欧、北美各国传播,在那里找到了许多知音。‘那些人又成了20世纪20年代出现的后期象征主义的中坚。但是,在‘法国,高峰过后,前期象征主义随即开始衰落。1891年,,象征派“文学宣言”的作者莫雷亚斯首先宣布脱离象征派,而提倡一种所谓“罗曼派”的文学,试图恢复他的先祖希腊罗马古代文学的传统。接着,兰波、魏尔伦、玛拉美分别于1891、1896、1898年过世,其他许多象征派诗人也纷纷选择新的发展方向,不再遵循象征主义艺术标准。前期象征主义作为70个文学流派,到19世纪末实际上已经解体。但是,前期象征主义作为一种文艺思潮,:其影响已在法国深深扎根。而且由于玛拉美等著名诗人的作用,象征主义在19世纪末开始越过法国国界线,向西欧、北美扩展,到上世纪20年代,又兴起了后象征主义。

《西方哲学史(第七版)》pdf下载在线阅读,求百度网盘云资源

《西方哲学史(第七版)》((美)斯通普夫 菲泽 著)电子书网盘下载免费在线阅读资源链接:链接:https://pan.baidu.com/s/1w8MtWntW5IC0fUakDfG1tQ 提取码:qf2n书名:西方哲学史(第七版)作者:(美)斯通普夫 菲泽 著译者:丁三东 邓晓芒 等译豆瓣评分:8.3出版社:中华书局出版年份:2005-01页数:783内容简介:我们面前的这本哲学史以长短适当的篇幅(中文约四十万字左右),将西方两千多年的哲学思想作了一个清晰的展示,很适合作为大学生的西方哲学史课程的入门教材。本书在表述上异常清楚明白。作者善于抓住每个哲学家的总体特点进行描述,而略去了那些可能导致读者思想钻入牛角尖里去的复杂论证。在材料的安排上,作者非常注意哲学家思想内部的逻辑关联和从一个主题向另一个主题的逐渐推移,并力图做到揭示一个哲学家思想与下一个哲学家的思想之间的联系和进展。作者简介:著者简介撒穆尔u2022伊诺克u2022斯通普夫(Samuel Enoch Stumpf,1918~1998),芝加哥大学博士、哈佛大学福特研究员、牛津大学洛克菲勒研究员。他在担任万德比尔特大学哲学系主任长达15年后,曾出任爱荷华的康奈尔学院的校长。斯通普夫在哲学、医学伦理和法理学等领域也颇有建树。詹姆斯u2022菲泽(James Fieser),普渡大学博士,现任田纳西大学哲学系教授。著述有《道德哲学史》(2001),与人合著有《哲学入门》(2002)。菲泽还与人合编《世界宗教经典》一书,并创建了“哲学网络百科全书”。译者简介(部分)邓晓芒(1948~ ),著名哲学家,武汉大学教授、西方哲学研究所所长,中华外国哲学史学会常务理事,长期从事西方哲学史的教学和研究工作。匡宏,武汉大学外国哲学博士。推荐者简介何兆武 (1921~ ),著名翻译家、思想文化史学家。赵汀阳(1961~ )中国社会科学院哲学研究所研究员,当代著名哲学家。

中华医学史是中文核心期刊

没有检索到:中华医学史下面推荐:中华医史《中华医史杂志》(双月刊)创刊于1947年,由中国科学技术协会主管,中华医学会主办,中国中医科学院中国医史文献研究所承办的中国唯一的医史学专业学术期刊。 《中华医史杂志》是中国唯一的医史学专业学术期刊,...主管主办:中国科学技术协会 中华医学会快捷分类:医学医学教育与医学边缘学科 医药卫生科技出版发行:北京 双月刊 A4期刊刊号:0255-7053, 11-2155/R创刊时间:1947 影响因子 0.077审稿时间:1-3个月期刊级别: 国家级期刊 

请问古希腊哲学在哲学史上的地位是怎样的?

古希腊哲学的影响在很多方面为现代科学与现代哲学铺设了道路。 在宗教方面,古典希腊哲学对早期不同宗教的希腊化发展都具有深远的影响。数学是古希腊哲学之魂。原始文化和古希腊哲学的区别只在于:原始人对图腾只有情感上、信仰上的虔诚,而没有方法上、逻辑上的论证。数学为古希腊的形而上学提供了逻辑演绎的论证方法,这就使人类不仅相信、而且自认为可以理由充足地相信形而上学本体的真实性。古希腊哲学在整体上是自然和人的神化,即形而上学化。因为他们所要回答的问题都是“本源”的问题,他们都企图给宇宙寻找一个不变的、永恒的支撑点,都相信能够对一切作出终极的解释。在决定论的意义上,只要你想在哲学上为人类找到一个终极答案,只要你认为宇宙、人生、人的认识有一个终极的本源,那么这就是形而上学。亚里士多德可以认为是古希腊哲学的全面总结,可以说亚氏是古希腊哲学的顶峰,但只有在形而上学的意义上才能成立。因为他的哲学太全面,它太圆滑、封闭,没有棱角。不论古希腊哲学在人类历史上占有多么重要的地位,也不论那些哲学史的研究者们给其冠以多么高贵的头衔,我还是固执地认为古希腊哲学是幼稚的、天真的、甚至是盲目的,是一种哲学化的宗教。

古希腊哲学在哲学史上的地位是怎样的?

王者地位啊

古希腊哲学在哲学史上的地位是怎样的?

古希腊哲学的影响在很多方面为现代科学与现代哲学铺设了道路。 在宗教方面,古典希腊哲学对早期不同宗教的希腊化发展都具有深远的影响。数学是古希腊哲学之魂。原始文化和古希腊哲学的区别只在于:原始人对图腾只有情感上、信仰上的虔诚,而没有方法上、逻辑上的论证。数学为古希腊的形而上学提供了逻辑演绎的论证方法,这就使人类不仅相信、而且自认为可以理由充足地相信形而上学本体的真实性。古希腊哲学在整体上是自然和人的神化,即形而上学化。因为他们所要回答的问题都是“本源”的问题,他们都企图给宇宙寻找一个不变的、永恒的支撑点,都相信能够对一切作出终极的解释。在决定论的意义上,只要你想在哲学上为人类找到一个终极答案,只要你认为宇宙、人生、人的认识有一个终极的本源,那么这就是形而上学。亚里士多德可以认为是古希腊哲学的全面总结,可以说亚氏是古希腊哲学的顶峰,但只有在形而上学的意义上才能成立。因为他的哲学太全面,它太圆滑、封闭,没有棱角。不论古希腊哲学在人类历史上占有多么重要的地位,也不论那些哲学史的研究者们给其冠以多么高贵的头衔,我还是固执地认为古希腊哲学是幼稚的、天真的、甚至是盲目的,是一种哲学化的宗教。

古希腊的哲学史

古希腊哲学是公元前6-公元5世纪出现在希腊本土以及地中海沿岸,特别是小亚细亚西部、意大利南部的哲学学说。又称古希腊罗马哲学,是西方哲学最初发生和发展的阶段。古典希腊哲学,或称早期希腊哲学集中在辩论与质询的任务。在很多方面,它同时为现代科学与现代哲学铺设了道路。早期希腊哲学家对后世产生的影响从未间断,从早期穆斯林哲学到文艺复兴,再到启蒙运动和现代的普通科学。 古典希腊哲学的影响在很多方面为现代科学与现代哲学铺设了道路。在宗教方面,古典希腊哲学对早期不同宗教的希腊化发展都具有深远的影响。例如,犹太教的希腊化,著名犹太哲学家:亚里斯多布鲁斯和斐洛,便采用了寓意的解经方法。而在基督宗教当中,早期的教会父老都融合了古希腊哲学的思想和解经方法。由于受著名的教父游斯丁、俄利根和特土良等所影响,形成了很多基督教传统教义。

什么是古文运动?它在文学史上意义何在?

唐宋古文运动是指唐代中叶及北宋时期以提倡古文、反对骈文为特点的文体改革运动。因同时涉及文 学的思想内容,所以兼有思想运动和社会运动的性质。 “古文”这一概念由韩愈最先提出。 他把六朝以来讲求声律及辞藻、 排偶的骈文视为俗下文字,认为自己的散文继承了先秦两汉文章的传统,所以称“古文”。韩愈提倡古文,目的在于恢复古代的儒学道统,将改革文风与复兴儒学变为相辅相成的运动。在提倡古文时,进一步强调要以文明道。除唐代的韩愈、 柳宗元外,宋代的欧阳修、王安石、曾巩、苏洵、苏轼、苏辙等人也是其中的代表性人物。文运动在我国古代散文发展史上的主要贡献,就是扭转了长期统治文坛的形式主义潮流,继承了早期散文的优良 传统并有所创新和发展,从而开创了散文写作的新局面,拨正了古代散文的发展方向。宋代及宋以后的散文,其主流就是在唐代古文运动所奠定的基础上继续发展的

数学史怎样融入数学教育

1,故事策略 虽说数学史不等于数学故事,但是,数学家或数学界的遗闻佚事, 不仅能大大激发学生的学习兴趣,而且对学生的人格成长还富有启发作用。2, 方法比较策略 如果方法不好,即便是有天才的人也将一事无成. 数学教学必须要使学生明白,任何方法仅仅是许许多多的方法之中的一个, 其中有许多你可能联想都未曾想过. 那种始终认为自己是最正确的、肯定自己的思维都比别人的要高明,肯定没有其他更好的选择的行为,这些都是自负的表现. 而自负是思维的重大过失,它会扼杀真正的思维。3,追踪历史起源策略 数学固然起源于人类对日常生活现象的观察,但它决不简单, 有一定的难度,需要时间去体验、把玩并体会它的意蕴。4 ,揭示思维过程策略将数学研究中的思想和方法的要点原原本本地告诉学生,引导青年学生沿着科学的艰险道路作一次富有探索精神的、充满为真理而斗争的崇高动机的旅行, 使学生充分领略以前数学大师们的灵感,承受他们的启迪,可以从中学到他们的策略和经验等。总结:前人的成功和失误,都是后人聪明的源泉. 数学史可以将逻辑推理还原为合情推理, 将逻辑演绎追溯到归纳演绎. 通过挖掘历史上数学家解决问题的真谛,学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,开拓学生的视野,使学生更具有洞察力。

文学史中现代主义和后现代主义的异同

(1)它们都受到非理性主义哲学的影响,但是具体的哲学基础并不相同。现代主义文学是在叔本华唯意志哲学、柏格森的生命哲学、尼采的权力意志论和弗洛伊德精神分析学等哲学思想和现代心理学研究成果的影响下产生的,后现代主义则直接受到了存在主义哲学、现象学和后结构主义等哲学思想的影响。所以,现代主义文学更多地关注人的内心世界,尤其是非理性的精神活动,开掘人的无意识领域;而后现代主义文学则将关切的目光投向了个体的存在境遇,包括了人的精神层面和无意识领域,但更加突出人存在的荒诞感,表现出更加彻底的怀疑主义和虚无主义,虽然表现极端,但其本质具有更为浓厚的人文关怀精神。(2)文学的文化精神不同。现代主义反叛传统,常常立足于对资本主义文化和庸俗趣味的厌弃,虽然颠覆了传统的理性精神,但是试图以超功利的艺术来拯救堕落的道德与文化,带有强烈的精英意识。后现代主义文学也反叛传统,但它是在消费社会中发展起来的,其积极地理解了大众文化的意义和作用,从强调差异性和多义性的角度出发,在普通大众中找到了反叛权威和精英的立场与方法,以娱乐化的方式进行写作,打通艺术与生活的隔阂,消解来自任何方面包括语言的权威与统治,表现出更加彻底的否定精神,也划清了与现代主义文学的界限。(3)在艺术形式和美学追求上,现代主义文学和后现代主义文学都表现出抛弃传统、大胆创新的特征,但后现代主义更加激进。后现代主义打破了精英文学和大众文学的界限,重视读者阅读作用在文本意义生成方面的积极性,运用各种新的表现方法,破坏叙事常规,消解文本的确定性意义,使文本呈现出开放性、多义性和歧义性特征,让文学创作活动呈现出由作者向读者延伸的趋势。

中国现当代文学史上,你认为哪几位作家最厉害?

获得诺贝尔文学奖的莫言,沈从文。我认为这两位作家是最厉害的。

中国现当代文学史

哎。同感。看书都没目的。纠结.

中国现当代文学史的目录

第一章 清末民初文学第二章 “五四”文学第三章 30年代文学第四章 40年代文学第五章 “十七年”文学第六章 “文革”文学第七章 新时期文学第八章 80年代文学第九章 90年代文学第十章 新世纪文学
 首页 上一页  1 2 3 4 5 6 7  下一页  尾页