有限元

阅读 / 问答 / 标签

有限元法基本原理及应用的目录

第l章 概述1.1 有限元法的基本思想1.2 有限元法的特点1.3 有限元法的发展及其应用领域1.3.1 有限元法的发展1.3.2 有限元法的应用领域1.4 本章 小结第2章 弹性力学基本理论2.1 弹性力学的基本假设2.2 弹性力学的基本概念2.2.1 体力2.2.2 面力2.2.3 应力2.2.4 应变2.2.5 位移2.2.6 主应力2.2.7 主应变2.3 弹性力学基本方程2.3.1 平衡微分方程2.3.2 几何方程2.3.3 物理方程2.3.4 边界条件2.4 平面问题的基本理论2.4.1 F面应力问题2.4.2 5tF面应变问题2.4.3 平面问题的基本方程2.5 弹性力学中的能量原理2.5.1 虚位移原理2.5.2 极小势能原理2.6 本章 小结第3章 弹性力学有限元法3.1 有限元法求解问题的基本步骤3.2 连续体离散化3.2.1 杆状单元3.2.2 平面单元3.2.3 薄板弯曲单元和薄板单元3.2.4 多面体单元3.2.5 等参单元3.2.6 轴对称单元3.3 单元分析3.3.1 单元的插值函数3.3.2 单元分析3.3.3 载荷移置3.4 整体分析3.5 边界条件处理3.5.1 划行划列法3.5.2 对角线元素置l法3.5.3 对角线元素乘大数法3.6 求解、计算结果的整理和有限元后处理3.7 本章 小结第4章 有限元分析中的若干问题4.1 有限元计算模型的建立4.1.1 有限元建模的准则4.1.2 边界条件的处理4.1.3 连接条件的处理4.2 减小解题规模的常用措施4.2.1 对称性和反对称性4.2.2 周期性条件4.2.3 降维处理和几何简化4.2.4 子结构技术4.2.5 线性近似化4.2.6 多种载荷工况的合并处理4.2.7 节点编号的优化4.3 本章 小结第5章 ANSYS概述5.1 ANSYS的功能5.1.1 基本功能5.1.2 高级功能5.2 ANSYS界面介绍5.3 ANSYS使用与设置5.3.1 启动与退出5.3.2 图形拾取操作5.3.3 ANSYS图形控制5.3.4 ANSYS文件管理5.3.5 ANSYS单位制5.4 本章 小结5.5 习题第6章 ANSYS建模与网格划分6.1 ANSYS的坐标系统6.1.1 总体坐标6.1.2 局部坐标6.1.3 显示坐标6.1.4 节点坐标6.1.5 单元坐标6.1.6 结果坐标6.1.7 工作平面6.2 ANSYS的建模6.2.1 实体建模6.2.2 自底向上建模6.2.3 自顶向下建模6.2.4 布尔运算6.3 网格划分6.3.1 定义单元属性6.3.2 网格划分6.3.3 直接生成节点和单元6.4 耦合与约束6.4.1 耦合6.4.2 约束6.5 本章 小结6.6 习题第7章 ANSYS加载与求解7.1 载荷的概念7.1.1 ANSYS中的载荷类型7.1.2 载荷步和子步7.1.3 寸间的作用7.1.4 阶跃载荷与斜坡载荷7.2 加载7.2.1 自由度约束7.2.2 集中力加载7.2.3 面载荷7.2.4 其他载荷的加载7.2.5 删除载荷和其他操作7.3 求解7.3.1 求解器7.3.2 分析类型7.3.3 求解7.3.4.多载荷步结构分析实例7.4 后处理7.4.1 通用后处理器7.4.2 通用后处理器的选项控制7.4.3 图形显示结果数据7.4.4 结果查询7.4.5 结果浏览器7.4.6 单元表7.4.7 路径操作7.4.8 载荷工况7.4.9 中间历程后处理器7.5 本章 小结7.6 习题第8章 ANSYSI程应用实例8.1 平面梁架类问题第9章 动力学分析附录参考文献后记

什么是有限元分析

什么是有限元分析如下:有限元的意思是:有限元在数学中,有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。求解时对整个问题区域进行分解,每个子区域都成为简单的部分,这种简单部分就称作有限元。在20世纪60年代,有限元法(Finite Element Method)被美国、苏联与中国的数学家分别独立地提出来。我国有限元法先驱冯康于1965年发表《基于变分原理的差分格式》一文,在极其广泛的条件下证明了方法的收敛性与稳定性。目前,国际公认的有限元法思想先驱包括: Richard Courant(美国),Loannis Argyris(希腊),Leonard Oganesyan(苏联),冯康(中国)(from wikipedia)。著名力学家、美国工程院院士奥登(J. T. Oden, 1936—)在其《有限元的历史评论》一文中指出:“冯康1965年用中文写作的文章,西方十多年后才予以了解,被很多人认为是有限元方法收敛性的第一个证明。”扩展资料:有限元方法/理论已经发展得相当成熟和完善,而计算机技术的不断革新,又在很大程度上推进了有限元法分析在工程技术领域的应用。然而,如此快速地推广和应用使得人们很容易忽视一个前提,即有限元分析软件提供的计算结果是否可靠、满足使用精度的前提,是合理地使用软件和专业的工程分析。

谁能解释下什么是有限元。

有限元有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 英文:Finite Element 有限单元法是随着电子计算机的发展而迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元法分析计算的思路和做法可归纳如下:编辑本段1) 物体离散化 将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算进度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。编辑本段2) 单元特性分析 A、 选择位移模式 在有限单元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。位移法易于实现计算自动化,所以,在有限单元法中位移法应用范围最广。 当采用位移法时,物体或结构物离散化之后,就可把单元总的一些物理量如位移,应变和应力等由节点位移来表示。这时可以对单元中位移的分布采用一些能逼近原函数的近似函数予以描述。通常,有限元法我们就将位移表示为坐标变量的简单函数。这种函数称为位移模式或位移函数。 B、 分析单元的力学性质 根据单元的材料性质、形状、尺寸、节点数目、位置及其含义等,找出单元节点力和节点位移的关系式,这是单元分析中的关键一步。此时需要应用弹性力学中的几何方程和物理方程来建立力和位移的方程式,从而导出单元刚度矩阵,这是有限元法的基本步骤之一。 C、 计算等效节点力 物体离散化后,假定力是通过节点从一个单元传递到另一个单元。但是,对于实际的连续体,力是从单元的公共边传递到另一个单元中去的。因而,这种作用在单元边界上的表面力、体积力和集中力都需要等效的移到节点上去,也就是用等效的节点力来代替所有作用在单元上的力。编辑本段3) 单元组集 利用结构力的平衡条件和边界条件把各个单元按原来的结构重新连接起来,形成整体的有限元方程 (1-1) 式中,K是整体结构的刚度矩阵;q是节点位移列阵;f是载荷列阵。编辑本段4) 求解未知节点位移 解有限元方程式(1-1)得出位移。这里,可以根据方程组的具体特点来选择合适的计算方法。 通过上述分析,可以看出,有限单元法的基本思想是"一分一合",分是为了就进行单元分析,合则为了对整体结构进行综合分析。 有限元的发展概况 1943年 courant在论文中取定义在三角形域上分片连续函数,利用最小势能原理研究St.Venant的扭转问题。 1960年 clough的平面弹性论文中用“有限元法”这个名称。 1965年 冯康发表了论文“基于变分原理的差分格式”,这篇论文是国际学术界承认我国独立发展有限元方法的主要依据。 1970年 随着计算机和软件的发展,有限元发展起来。 涉及的内容:有限元所依据的理论,单元的划分原则,形状函数的选取及协调性。 有限元法涉及:数值计算方法及其误差、收敛性和稳定性。 应用范围:固体力学、流体力学、热传导、电磁学、声学、生物力学 求解的情况:杆、梁、板、壳、块体等各类单元构成的弹性(线性和非线性)、弹塑性或塑性问题(包括静力和动力问题)。能求解各类场分布问题(流体场、温度场、电磁场等的稳态和瞬态问题),水流管路、电路、润滑、噪声以及固体、流体、温度相互作用的问题。编辑本段5)有限元的未来是多物理场耦合 5)有限元的未来是多物理场耦合 随着计算机技术的迅速发展,在工程领域中,有限元分析(FEA)越来越多地用于仿真模拟,来求解真实的工程问题。这些年来,越来越多的工程师、应用数学家和物理学家已经证明这种采用求解偏微分方程(PDE)的方法可以求解许多物理现象,这些偏微分方程可以用来描述流动、电磁场以及结构力学等等。有限元方法用来将这些众所周知的数学方程转化为近似的数字式图象。 早期的有限元主要关注于某个专业领域,比如应力或疲劳,但是,一般来说,物理现象都不是单独存在的。例如,只要运动就会产生热,而热反过来又影响一些材料属性,如电导率、化学反应速率、流体的粘性等等。这种物理系统的耦合就是我们所说的多物理场,分析起来比我们单独去分析一个物理场要复杂得多。很明显,我们现在需要一个多物理场分析工具。 在上个世纪90年代以前,由于计算机资源的缺乏,多物理场模拟仅仅停留在理论阶段,有限元建模也局限于对单个物理场的模拟,最常见的也就是对力学、传热、流体以及电磁场的模拟。看起来有限元仿真的命运好像也就是对单个物理场的模拟。 现在这种情况已经开始改变。经过数十年的努力,计算科学的发展为我们提供了更灵巧简洁而又快速的算法,更强劲的硬件配置,使得对多物理场的有限元模拟成为可能。新兴的有限元方法为多物理场分析提供了一个新的机遇,满足了工程师对真实物理系统的求解需要。有限元的未来在于多物理场求解。 千言万语道不尽,下面只能通过几个例子来展示多物理场的有限元分析在未来的一些潜在应用。 压电扩音器(Piezoacoustic transducer)可以将电流转换为声学压力场,或者反过来,将声场转换为电流场。这种装置一般用在空气或者液体中的声源装置上,比如相控阵麦克风,超声生物成像仪,声纳传感器,声学生物治疗仪等,也可用在一些机械装置比如喷墨机和压电马达等。 压电扩音器涉及到三个不同的物理场:结构场,电场以及流体中的声场。只有具有多物理场分析能力的软件才能求解这个模型。 压电材料选用PZT5-H晶体,这种材料在压电传感器中用得比较广泛。在空气和晶体的交界面处,将声场边界条件设置为压力等于结构场的法向加速度,这样可以将压力传到空气中去。另外,晶体域中又会因为空气压力对其的影响而产生变形。仿真研究了在施加一个幅值200V,震荡频率为300 KHz的电流后,晶体产生的声波传播。这个模型的描述及其完美的结果表明在任何复杂的模型下,我们都可以用一系列的数学模型进行表达,进而求解。 多物理场建模的另外一个优势就是在学校里,学生们直观地获取了以前无法见到的一些现象,而简单易懂的表达方式也获得了学生们的好感。这只是Krishan Kumar Bhatia博士在纽约Glassboro的Rowan 大学给高年级的毕业生讲授传热方程课程时介绍建模及分析工具所感受到的,他的学生的课题是如何冷却一个摩托车的发动机箱。Bhatia博士教他们如何利用“设计-制造-检测”的理念来判断问题、找出问题、解决问题。如果没有计算机仿真的应用,这种方法在课堂上推广是不可想象的,因为所需费用实在是太大了。 COMSOL Multiphysics拥有优秀的用户界面,可以使学生方便地设置传热问题,并很快得到所需要的结果。“我的目标是使每个学生都能了解偏微分方程,当下次再遇到这样的问题时,他们不会再担心,” Bhatia博士说,“这不需要了解太多的分析工具,总的来说,学生都反映‘这个建模工具太棒了"”。 很多优秀的高科技工程公司已经看到多物理场建模可以帮助他们保持竞争力。多物理场建模工具可以让工程师进行更多的虚拟分析而不是每次都需要进行实物测试。这样,他们就可以快速而经济地优化产品。在印度尼西亚的Medrad Innovations Group中,由John Kalafut博士带领着一个研究小组,采用多物理场分析工具来研究细长的注射器中血细胞的注射过程,这是一种非牛顿流体,而且具有很高的剪切速率。 通过这项研究,Medrad的工程师制造了一个新颖的装置称为先锋型血管造影导管(Vanguard Dx Angiographic Catheter)。同采用尖喷嘴的传统导管相比,采用扩散型喷嘴的新导管使得造影剂分布得更加均匀。造影剂就是在进行X光拍照时,将病变的器官显示得更加清楚的特殊材料。 另外一个问题就是传统导管在使用过程中可能会使得造影剂产生很大的速度,进而可能会损伤血管。先锋型血管造影导管降低了造影剂对血管产生的冲击力,将血管损伤的可能性降至最低。 关键的问题就是如何去设计导管的喷嘴形状,使其既能优化流体速度又能减少结构变形。Kalafut的研究小组利用多物理场建模方法将层流产生的力耦合到应力应变分 析中去,进而对各种不同喷嘴的形状、布局进行流固耦合分析。“我们的一个实习生针对不同的流体区域建立不同的喷嘴布局,并进行了分析,” Kalafut博士说,“我们利用这些分析结果来评估这些新想法的可行性,进而降低实体模型制造次数”。 摩擦搅拌焊接(FSW),自从1991年被申请专利以来,已经广泛应用于铝合金的焊接。航空工业最先开始采用这些技术,现在正在研究如何利用它来降低制造成本。在摩擦搅拌焊接的过程中,一个圆柱状具有轴肩和搅拌头的刀具旋转插入两片金属的连接处。旋转的轴肩和搅拌头用来生热,但是这个热还不足以融化金属。反之,软化呈塑性的金属会形成一道坚实的屏障,会阻止氧气氧化金属和气泡的形成。粉碎,搅拌和挤压的动作可以使焊缝处的结构比原先的金属结构还要好,强度甚至可以到原来的两倍。这种焊接装置甚至可以用于不同类型的铝合金焊接。 空中客车(AirBus)资助了很多关于摩擦搅拌焊接的研究。在制造商大规模投资和重组生产线之前,Cranfield大学的Paul Colegrove博士利用多物理场分析工具帮助他们理解了加工过程。 第一个研究成果是一个摩擦搅拌焊接的数学模型,这让空客的工程师“透视”到焊缝中来检查温度分布和微结构的变化。Colegrove博士和他的研究小组还编写了一个带有图形界面的仿真工具,这样空客的工程师可以直接提取材料的热力属性以及焊缝极限强度。 在这个摩擦搅拌焊接的模拟过程中,将三维的传热分析和二维轴对称的涡流模拟耦合起来。传热分析计算在刀具表面施加热流密度后,结构的热分布。可以提取出刀具的位移,热边界条件,以及焊接处材料的热学属性。接下来将刀具表面处的三维热分布映射到二维模型上。耦合起来的模型就可以计算在加工过程中热和流体之间的相互作用。 将基片的电磁、电阻以及传热行为耦合起来需要一个真正的多物理场分析工具。一个典型的应用是在半导体的加工和退火的工艺中,有一种利用感应加热的热壁熔炉,它用来让半导体晶圆生长,这是电子行业中的一项关键技术。 例如,金刚砂在2,000°C的高温环境下可以取代石墨接收器,接收器由功率接近10KW的射频装置加热。在如此高温下要保持炉内温度的均匀,炉腔的设计至关重要。经过多物理场分析工具的分析,发现热量主要是通过辐射的方式进行传播的。在模型内不仅可以看到晶圆表面温度的分布,还可以看到熔炉的石英管上的温度分布。 在电路设计中,影响材料选择的重要方面是材料的耐久性和使用寿命。电器小型化的趋势使得可在电路板上安装的电子元件发展迅猛。众所周知,安装在电路板上的电阻以及其他一些元件会产生大量的热,进而可能使得元件的焊脚处产生裂缝,最后导致整个电路板报废。 多物理场分析工具可以分析出整个电路板上热量的转移,结构的应力变化以及由于温度的上升导致的变形。这样做可以用来提升电路板设计的合理性以及材料选择的合理性。 计算机能力的提升使得有限元分析由单场分析到多场分析变成现实,未来的几年内,多物理场分析工具将会给学术界和工程界带来震惊。单调的“设计-校验”的设计方法将会慢慢被淘汰,虚拟造型技术将让你的思想走得更远,通过模拟仿真将会点燃创新的火花。

如图所示有限元当中的变分理论怎么理解?问题也在图片当中了

1有限元变分原理有限元是求解偏微分方程的数值方法,在数学上属于变分法范畴,是古典的Ritz-Galerkin方法与分片多项式插值的结合。古典的Ritz-Galerkin方法的试函数是求解域内的连续函数,有限元法的试函数是分片多项式。作为变分法的试函数产生了很大区别:古典的Ritz-Galerkin方法的试函数要求域内的连续或平方可积且满足位移边界条件,试函数定义在泛函分析的Hilbert空间,或称为内积空间。有限元法的试函数要求在单元域内连续或平方可积,且不用考虑位移边界条件,因为有限元是以节点位移参数为未知数,可以直接代入位移边界条件,但是单元间出现了连续性条件,即所谓的平面和三维弹性问题的C0连续,和薄板问题的C1连续等,相对古典的Ritz-Galerkin方法的试函数是一种广义函数。有限元试函数定义在泛函分析的Sobolev空间,或称为广义导数空间。

什么是有限元方法?

中文名称:有限元法 英文名称:finite element method 定义:一种将连续体离散化为若干个有限大小的单元体的集合,以求解连续体力学问题的数值方法。 应用学科:水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科);工程力学(水利)(三级学科)有限元法(finite element method)是一种高效能、常用的计算方法。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。基本思想:由解给定的泊松方程化为求解泛函的极值问题。原理:  将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。

有限元方法的实质是什么

有限元方法的实质是将连续函数离散化形成一系列具有一定尺度的数据再加以计算。就是利用微积分的逐渐逼近原理进行计算。选取尺度越小,计算所得数据越精确,计算量成几何级数增大。

有限元的基本理论

为避开抽象的概念,现以平面问题为对象进行有限元理论的推导说明。在平面区域内用有限元方法进行分析,单元节点上的力学状态通常由下列参数表征:(1)节点位移量考虑具有直线边界的单元e,其节点为i,j,m,…。单元内任意点的位移u以列矢量 来表示:油气藏现今地应力场评价方法及应用式中N的分量一般为坐标(x,y)的函数,ae表示e的全部节点位移,i=1,2,3…是单元节点的局部符号。以平面应力场为例,则下式表示单元内任意点(x,y)的位移x、y值:油气藏现今地应力场评价方法及应用且:油气藏现今地应力场评价方法及应用ai表示节点i的位移量。(2)节点应变如给定单元内所有节点的位移量,则可求出任意点的应变,其关系式可表示为:ε=Lu (1-38)式中L为适当的线性算子。根据式(1-33),上式可变为:ε=[B]a (1-39)此处:[B]=[L][N] (1-40)对于平面应力的场,相关联的应变将在平面内产生,在确定出算子L后,而位移的函数则可表示如下:油气藏现今地应力场评价方法及应用根据上式和已知的Ni,Ni,Nm函数,容易求得矩阵B。如果这些函数是线性函数,则单元内的应变为恒定值。(3)单元应力一般来讲,单元材料随温度的变化、收缩、结晶等发生应变。这种应变以εi表示,由于实际的应变和初期应变ε0存在差值,因而产生了应力。而且,受某个已知系统的影响,为了便于分析,从分析初期开始,通常假定物体处于受初期残留应力作用的状态。ε0有时能被测定出来,但如果不清楚材料来源的话,就不能预测其值。另外,此应力只能适用于一般的应力-应变关系式。基于以上考虑及一般的弹性运动状态,线性应力和应变的关系式可以表示如下:σ=D(ε-ε0)+σ0 (1-42)这里,σ0是初始应力,D是含有适当材料常数的弹性矩阵。下面进一步说明有关弹性应力场的问题。对于已定义的应变,必须考虑三个应力分量,表示为:油气藏现今地应力场评价方法及应用矩阵D可以用普通的各向同性弹性体关系式求得:油气藏现今地应力场评价方法及应用油气藏现今地应力场评价方法及应用于是:油气藏现今地应力场评价方法及应用(4)等价节点力把作用于单元边界上的应力及单元内的分布荷载(物体力—body force)等称为静态等价节点力,用下式表示:油气藏现今地应力场评价方法及应用这里,各节点的力 与对应节点位移ai具有相同的分量,而且应按对应位移的正确顺序排列。另外,物体力b被定义为作用在单元内部单位面积上的力,其作用方向与同一位移中位移u的方向相对应。例如,平面应力场的情况下,节点力为:油气藏现今地应力场评价方法及应用分量U、V的方向与变形u、v的方向对应。另外,物体力为:油气藏现今地应力场评价方法及应用其中:bx、by为其分量。把节点力与实际的边界应力、物体力等静态地等价起来的最简单方法是给任意的(假想)节点位移,由此使各种力和应力所产生的外部功与内部功相等。如果将赋给节点的假想位移表示为δae,则根据式(1-35)及式(1-41)单元内产生的位移和应变可由下式表示:δu=Nδae及δε=Bδae (1-51)节点力的功等于各个力的分量与相对应假想位移分量的积的和,可用矩阵可表示为:δaeTqe (1-52)同样,单位面积上应力及物体力所做的内部功为:δεTσ-δuTb (1-53)或者,代入式(1-52)得:δaT(BTσ-NTB) (1-54)如果令由式(1-52)得到的外部功等于单元总体积Ve上积分得全部内部功时,则有:油气藏现今地应力场评价方法及应用此式对于任意的应力-应变关系都成立。将式(1-42)代入式(1-54)得:qe=Keae+fe (1-56)式中:油气藏现今地应力场评价方法及应用且:油气藏现今地应力场评价方法及应用最后式子中的三项各为物体力、初期应变和初期应力的力的表现形式。任意的构造单元特性均可用下式表示:油气藏现今地应力场评价方法及应用(5)全区域的一般化至此,已阐明了假想功的原理仅对一个单元适用以及等价节点力的概念。在有限元法中,可通过建立每个单元节点的局部方程式导出式来分析区域内有限个节点的平衡方程式。因而,任意节点上的内力及外力可通过与该节点相连的所有单元在该节点上的内力及外力的总合来计算出来,即:Ka+f=r (1-60)另外,可将单元相互间的分布作用力、反作用力用等价节点进行置换,这一方法是很容易理解的。

有限元是什么

问题一:有限元分析是什么? 这个问题好!有限元就是一个工具,可以利用其进行场的分析,如磁场、电场、应力场、流场等等。因为往往我们只知道一个宏观的作用,但微观(相对的)的情况到底是啥样的不得而知,有限元通过把宏观的大的东西进行划分为一个个小的单元,把这些小的单元当做微观的东西,进而进行分析,得到微观的一个情况。如一个篮球框架,当有人扣篮拉着球框的时候,篮球架肯定会弯,但是弯多少呢?这个就可以利用有限元进行分析。先建立把篮筐架的物理模型,再将模型划分为一个个很小的单元,再添加载荷、约束后进行分析,就能得到结果。 这个概念太大,我是新手,解释不好。详情百度,或者找本有限元的书看看,也许会有些直接的感受 问题二:什么是有限元 有限元法是一种有效解决数学问题的解方法。其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,单元上所作用的力等效到节点上,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,就是用叉值函数来近似代替 ,借助于变分原理或加权余量法,将微分方程离散求解。 问题三:什么是有限元 有限元是那些 *** 在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。 有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。 对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。有限元求解问题的基本步骤通常为: 第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。 第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网络越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。 第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。 第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。 为保证问题求解的收敛性,单元推导有许多原则要遵循。 对工程应用而言,重要的是应注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。 第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。 第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、选代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。 简言之,有限元分析可分成三个阶段,前处理、处理和后处理。前处理是建立有限元模型,完成单元网格划分;后处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。 问题四:什么是有限元分析? 有限元分析是使用有限元方法来分析静态或动态的物理物体或物理系统。在这种方法中一个物体或系统被分解为由多个相互联结的、简单、独立的点组成的几何模型。在这种方法中这些独立的点的数量是有限的,因此被称为有限元。由实际的物理模型中推导出来得平衡方程式被使用到每个点上,由此产生了一个方程组。这个方程组可以用线性代数的方法来求解。有限元分析的精确度无法无限提高。元的数目到达一定高度后解的精确度不再提高,只有计算时间不断提高。有限元分析可被用来分析比较复杂的、用一般地说代数方法无法足够精确地分析的系统,它可以提供使用其它方法无法提供的结果。在实践中一般使用电脑来解决在分析时出现的巨量的数和方程组。在分析一个物体或系统中的压力和变形时有限元分析是一种常用的手段,此外它还被用来分析许多其它问题如热传导、流体力学和电力学。 问题五:有限元好难 怎么学啊 ? 如果你的静力学、材料力学、结构力学、矩阵代数都学得很好,学有限元就不难了。当然,有限元只适应于电脑计算,你还要懂电脑。如果前面有一个还没学扎实,学有限元就难了。 所谓“有限元”,就是将一个连续的构建(或构造物),用有限个单元来表示。当然,单元与单元之间的连接节点都是固结点(视边界条件而定),将单元和节点分别都编上号,即节点号和单元号。初学者最好从平面杆系开始,即将结构看成是一个平面图,然后在这个平面图上分成N个单元,再将其中一个单元单独拿出来,分析这个单元上、单元两端节点上有多少种力。 然后将这些力分别作用在节点上,会产生六个未知的值,即两个节点分别的弯矩、水平力、垂直力。将这六个未知力写出六个表达式(材料力学的知识),N个单元,就有6N个这样的力,组成一个矩阵,当然,这个6N个方程还有N个右端项,这个右端项就是边界条件(力的性质、作用、大小、固结或者铰结等)。完成了矩阵方程,下面就是用计算方法来解出这个矩阵(在学习矩阵里讲了这些方法)。 解出结果就是对应单元的六个力,最后将这些结果用大家都能看懂的格式打印出来,任务完成。 问题六:请问有限元方法的基本原理是什么? 有限元方法的基本原理:将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表示。从而使一个连续的无限自由度问题变成离散的有限自由度问题。 问题七:什么是有限元法,它的基本概念和思想是什么 有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。 它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。

求有限元网格划分的数学原理

有限元是通过区域插值逼近真实解的,满足一定条件下,网格越小,节点越多,精度越高的.平面问题,直接离散化,把原结构分割成很多有限大小的单元,分析单元的应力和变形,形成代数方程组,再求解的.三维问题也是相似的.

土体塌陷有限元数值模拟用哪款软件

Plaxis、ABAQUS软件。PLAXIS2D/3D程序是由荷兰PLAXISB.V.公司推出的一系列功能强大的通用岩土有限元计算软件,已广泛应用于各种复杂岩土工程项目的有限元分析中,如:大型基坑与周边环境相互影响、盾构隧道施工与周边既有建筑物相互作用、大型桩筏基础(桥桩基础)与邻近基坑的相互影响、板桩码头应力变形分析、库水位骤升骤降对坝体稳定性的影响、软土地基固结排水分析、基坑降水渗流分析及完全流固耦合分析、建筑物自由振动及地震荷载作用下的动力分析、边坡开挖及加固后稳定性分析等等。PLAXIS系列程序以其专业、高效、强大、稳定等特点得到世界各地岩土工程专业人员的广泛认可,日渐成为其日常工作中不可或缺的数值分析工具。尤其在欧洲、新加坡、马来西亚、香港等地应用广泛,PALXIS2D甚至用于常规的二维设计计算中。截至2012年初,世界范围内PLAXIS用户多达16000多家;其中中国用户已有百余家,涵盖了铁路、电力、石化、建筑、航务、冶金等行业设计院、高校、科研院所及少量施工单位。ABAQUS是一套功能强大的工程模拟的有限元软件,其解决问题的范围从相对简单的线性分析到许多复杂的非线性问题。ABAQUS包括一个丰富的、可模拟任意几何形状的单元库。并拥有各种类型的材料模型库,可以模拟典型工程材料的性能,其中包括金属、橡胶、高分子材料、复合材料、钢筋混凝土、可压缩超弹性泡沫材料以及土壤和岩石等地质材料,作为通用的模拟工具,ABAQUS除了能解决大量结构(应力/位移)问题,还可以模拟其他工程领域的许多问题,例如热传导、质量扩散、热电耦合分析、声学分析、岩土力学分析(流体渗透/应力耦合分析)及压电介质分析。

有限元分析软件的常见软件

Femap+ NX NastranSiemens PLM Software家族的Femap以Parasolid为内核,具有 20年专注于有限元建模领域的工程经验,有助于用户将复杂的模型建模简单化,其基于 Windows 的特性为用户提供了强大的功能,且易学易用!Femap 产品被广泛地应用于多种工程产品系统及过程之中,例如:卫星、航空器、重型起重机、高真空密封器等。Femap 提供了从高级梁建模、中面提取、六面体网格划分,到功能卓越的CAD输入和简化的工具。NX Nastran是CAE解算器技术事实上的标准,是全球航空、航天、汽车、造船等行业绝大部分客户认可的解算器。NX Nastran与Femap的结合为用户提供了一个强大且可承受的解决方案。它是一个许可证灵活、融合了 Siemens PLM Software公司的“公平的市场价值”的价格哲学理念的软件包,为用户提供了强有力的有限元分析工具,用户只需支付较低的整体价格就能得到最高级的Nastran功能。Femap + NX Nastran已经在全球各行业超过10000家企业应用。  COMSOL MultiphysicsCOMSOL Multiphysics是一款大型的高级数值仿真软件。广泛应用于各个领域的科学研究以及工程计算,被当今世界科学家称为“最专业的多物理场全耦合分析软件”。模拟科学和工程领域的各种物理过程,COMSOL Multiphysics以高效的计算性能和杰出的多场双向直接耦合分析能力实现了高度精确的数值仿真。pFEPG元计算科技发展有限公司首席科学家、中国科学院数学与系统科学研究所梁国平研究员团队历经八年的潜心研究,独创了具有国际领先水平的有限元程序自动生成系统(pFEPG)。pFEPG采用元件化思想和有限元语言这一先进的软件设计,为各种领域、各方面问题的有限元求解提供了一个极其有力的工具,采用FEPG可以在数天甚至数小时内完成通常需要数月甚至数年才能完成的编程劳动。pFEPG是目前“幸存”下来的为数不多的CAE技术中发展最好的有限元软件,目前有三百多家科研院、企业应用。也已成为国内做的最大的有限元软件平台。pFEPG作为通用型的有限元软件,能够解决固体力学、结构力学、流体力学、热传导、电磁场以及数学方面的有限元计算,在耦合具有特有的优势,能够实现多物理场任意耦合;在有限元并行计算方面处于领先地位。SciFEASciFEA软件开发的计算功能包括梁、板、壳结构计算;弹性、弹塑性、粘弹性、粘弹塑性、非线性弹性计算;热分析、流体分析、流固耦合、热固耦合、热流固耦合计算等功能。计算的类型包括静力、动力、模态分析等。SciFEA软件已形成了单机版、网络版、集群并行版、GPU并行版,GPU并行版是基于新的GPU/CPU混合架构的并行有限元计算系统。SciFEA可用于机械、土木、电气、电子、热能、航空航天、地质、能源等专业的有限元计算分析。也可用于高校研究所等单位的有限元教学与科研。结构特点SciFEA抛弃了传统CAE软件复杂结构体系设计模式,采用直接面向用户需求的独立模块开发方式。SciFEA软件中的功能模块保持了计算的独立性,对CAE软件功能扩展的复杂度降低。同时,进一步和行业需求集成的灵活度增加。SciFEA软件包括软件操作界面、前后处理和计算功能模块三大部分。前后处理采用欧洲工程数值模拟中心开发的GiD软件包,SciFEA3.0版提供计算功能模块包括:弹性计算、塑性计算、流体计算、粘弹性计算、材料计算、结构计算、损伤破裂计算、水热力耦合计算、传热计算、渗流计算、电磁计算、电热力耦合计算、岩土计算、热固耦合计算、化学反应计算等;计算类型包括稳态、瞬态、动力、非线性等。SciFEA发布的计算功能模块均提供算例,用户可以结合算例学习SciFEA。SciFEA的用户模块挂载功能实现了计算模块的快速整合以及耦合问题的快速求解。软件系列SciFEA提供单机版、网络版、机群并行版、显卡(GPU)并行版,发行的版本为3.0版本。单机版、网络版均提供免费试用的版本。使用版本的使用方式和正式版本一致,只是在计算的单元规模上有少于3000个单元的限制。网络版iSciFEA提供了试用的通用帐号(用户名:guest;密码SciFEA)。iSciFEA,SciFEA在北京超算官网上均有下载。前后处理SciFEA的前后处理器采用欧洲工程数值模拟国际中心开发的GiD软件。GiD软件具有几何建模、网格划分、CAD数据导入、后处理结果显示等功能。GiD采用类似于CAD的操作模式。几何建模可以通过拉伸、旋转、镜象、缩放、偏置等操作得到面、体,可以直接构造矩形、多边形、圆、球、圆柱、圆锥、棱柱、圆环等;通过体面的布尔加、减、交等操作得到模型。网格自动生成GiD可将几何模型自动离散成线单元、三角形单元、四边形单元、四面体单元、六面体单元等,并且可以根据用户的需要对网格进行局部的加密以及网格阶次的选择。CAD和CAE接口GiD提供:IGES、DXF、Parasolid、VDA、STL、Nastran等接口,并且可以将GiD的数据文件写成上述的格式。后处理GiD可将结果写成各种常用的图形文件如:BMP、GIF、TPEG、PNG、TGA、TIFF、VRML等格式,以及AVI、MEPG的动画格式。后处理支持的结果显示方式有:带状云图显示、等直线显示、切片显示、矢量显示、变形显示等等。并且可以根据用户的需要定制显示菜单。SciFEA软件GPU版本超算显卡并行系统(简称SciFEA-GPU)是北京超算自主开发的一款基于GPU/CPU混合架构的有限元分析系统。基于GPU和CPU两种不同架构处理器的结合,组成硬件上的协同模式;通过实现GPU和CPU的混合编程,由CPU负责执行顺序型的代码,由GPU来负责密集的并行计算实现高效有限元分析。同时SciFEA-GPU软件按照全新的可装配的思路进行开发,利用软件的可重用性,降低了软件开发的难度,增加了软件的可靠度。SciFEA-GPU软件的设计架构体现了数值模拟软件个性化发展方向,为用户提供了一种按需选择的高性能计算新模式。SciFEA-GPU在材料固化、岩石破裂、瓦斯运移、孔隙介质渗流均有成功应用,隐式算法的计算效率是单CPU的6-8倍,显式算法在30倍左右。北京超算提供计算GPU加速引擎和GPU并行计算软件开发定制服务。ABAQUSABAQUS是一套功能强大的工程模拟的有限元软件,其解决问题的范围从相对简单的线性分析到许多复杂的非线性问题。达索并购ABAQUS后,将SIMULIA作为其分析产品的新品牌。它是一个协同、开放、集成的多物理场仿真平台。LMS-SamtechSAMTECH公司是世界著名的有限元软件SAMCEF的开发商和供应服务商,公司总部设在比利时列日市,其前身是比利时列日大学的宇航实验室,其软件开发的历史可以追溯到1965年。SAMCEF软件的第一个静力分析程序ASEF与1965年完成。随后在1972和1975年分别增加了模态分析程序DYNAM和热分析程序Thermal ASEF。1977年动力响应程序REPDYN诞生。1978年SAMCEF优化模块OPTI推出。1980年非线性静态和动力学软件SAMCEF Mecano的推出标志着SAMCEF在多柔体动力学领域地位的确立。 2011年8月24日,LMS国际公司正式对外宣布收购SAMTECH公司,成为其最大的控股股东。从此Samtech成为LMS国际公司的有限元专业解决方案。介绍及技术特点SAMCEF Mecano是以解决非线性结构和机构运动学问题的有限元分析软件。可用于各种线性与非线性的结构强度计算,传热学计算机运动鞋问题分析。其有以下求解器构成,能够解决下列专业领域的具体分析 :Mecano Sturcture:专注于解决结构非线性静态和动态分析问题(大位移和大转角)Mecano Motion: 专注于解决柔性静力学,运动学和动力学分析问题Mecano Thermal: 专注于非线性稳态和瞬态分析求解器由这些求解器构成的samcef mecano非线性隐式有限元求解器能够求解一下问题:隐式非线性静力学分析,隐式非线性动力学分析,多体动力学分析,线缆非线性动力学分析和非线性热学分析。目前,在机械系统的动力学和运动学的强度和刚度仿真分析方面主要有两类分析软件,一类是以结构为主要分析对象的有限元分析软件,另一类是以机构运动为主要研究对象的运动鞋仿真分析软件。这些软件的局限性是在处理刚柔耦合问题时不易使用且无法处理非线性的效应。Samcef Mecano 则在这一领域提供了领先的解决方案。其独特的Motion in FEA方法将机构的运动仿真与结构的有限元分析无缝集成,可以很有效地处理刚柔耦合问题并考虑可能的非线性效应。这一领先技术已经在航空,航天,汽车,通用机械,电子设备等多个领域发挥了重要作用。SAMCEFFieldSAMCEF Field是通用的有限元分析前后处理平台。它以图形化界面的形式,完成几何建模,特性定义,载荷和约束处理,网格划分,作业提交和监控以及后处理仿真等操作。它支持各种CAD到CAE模型的导入,以及各种格式结果文件和图表的输出。作为一个开放式的环境,SAMCEF Field通过非常直观的导航功能,为用户进行机构与结构的设计和仿真分析提供了一个必要的工具 。

有限元和数值模拟区别

有限元和数值模拟区别?答案如下:有限元和数值模拟区别是 种类不同,第二步是皮实共创共建解耦集成。

有限元数值模拟方法

有限单元法是应用于构造应力场模拟的最广泛的数学模拟方法。其基本思想是将所研究的地质体以一定的方式(单元形状和节点个数)简化为有限个单元组成的离散化模型,再用相应的计算程序求出数值解答。利用有限元法数值模拟,可以利用地质调查和构造解析获得的较少地质应力状态的资料来反演区域内各点的应力状态,从而获得区域的构造应力场特征,加深认识区域内的构造演化。目前有限单元法的应用已由弹性力学的平面问题扩展到空间问题、板壳问题,分析对象从弹性材料扩展到塑性、粘弹性、粘塑性和复合材料。有限元法数值模拟随着计算机技术的发展在科学计算领域得到广泛应用,20世纪80年代以来,国际上已有较大型的有限元计算程序达几百种,其中较著名的有:ANSYS、NASTRAN、ASK、ADINA、SAP等。以ANSYS为代表的数值模拟软件将有限元分析、计算机图形学和优化技术相结合,已成为科学计算领域不可缺少的有力工具。基于本区岩石圈的三维结构特点,我们首先对本区的三层结构相互作用关系进行了模拟。对本区的物理模拟研究,前人已经做过很多工作,其中在对印度板块挤压下亚洲中东部的构造模拟中,有的反映出大型走滑断裂、裂谷和张性盆地以及压性逆冲断裂等构造现象,有的反映出多层构造中网络状流动现象,认为板内变形受塑性流动网络控制(Tapponnier et al.,1982;李建国等,1997)。这些工作往往只反映了本区的某一方面的特性,而无法对本区的构造形态做出动力学的完善解释。因此在前人的工作基础上,我们首先建立了本区的一个三层结构模型,其中中上地壳深度根据天然地震资料定为30 km,下地壳以莫霍面为其底界,根据地震测深资料取50 km。因为本模型建立的主要目的是确定岩石圈各圈层之间的作用关系,因此模型底部只考虑到100 km的深度。

土体塌陷有限元数值模拟用哪款软件

Plaxis、ABAQUS软件。PLAXIS2D/3D程序是由荷兰PLAXISB.V.公司推出的一系列功能强大的通用岩土有限元计算软件,已广泛应用于各种复杂岩土工程项目的有限元分析中,如:大型基坑与周边环境相互影响、盾构隧道施工与周边既有建筑物相互作用、大型桩筏基础(桥桩基础)与邻近基坑的相互影响、板桩码头应力变形分析、库水位骤升骤降对坝体稳定性的影响、软土地基固结排水分析、基坑降水渗流分析及完全流固耦合分析、建筑物自由振动及地震荷载作用下的动力分析、边坡开挖及加固后稳定性分析等等。PLAXIS系列程序以其专业、高效、强大、稳定等特点得到世界各地岩土工程专业人员的广泛认可,日渐成为其日常工作中不可或缺的数值分析工具。尤其在欧洲、新加坡、马来西亚、香港等地应用广泛,PALXIS2D甚至用于常规的二维设计计算中。截至2012年初,世界范围内PLAXIS用户多达16000多家;其中中国用户已有百余家,涵盖了铁路、电力、石化、建筑、航务、冶金等行业设计院、高校、科研院所及少量施工单位。ABAQUS是一套功能强大的工程模拟的有限元软件,其解决问题的范围从相对简单的线性分析到许多复杂的非线性问题。ABAQUS包括一个丰富的、可模拟任意几何形状的单元库。并拥有各种类型的材料模型库,可以模拟典型工程材料的性能,其中包括金属、橡胶、高分子材料、复合材料、钢筋混凝土、可压缩超弹性泡沫材料以及土壤和岩石等地质材料,作为通用的模拟工具,ABAQUS除了能解决大量结构(应力/位移)问题,还可以模拟其他工程领域的许多问题,例如热传导、质量扩散、热电耦合分析、声学分析、岩土力学分析(流体渗透/应力耦合分析)及压电介质分析。
 首页 上一页  1 2 3