蛋白质

阅读 / 问答 / 标签

熵增原理 蛋白质

维持蛋白质的分子三维结构的一个效应就是熵效应(熵就是混乱度,一个物体越无序越混乱其熵增越大,但是这个体系会趋向稳定),它的意义是在某种分子折叠构象下能保证该分子最稳定(熵最大)。具体表现为蛋白质分子在水中会自发折叠为一个倾向其疏水残基位于分子内部的构象。蛋白质水溶液系统的熵增是疏水作用的主要动力:蛋白质分子若把疏水集团暴露在外,水中的氢键会被之消耗,导致剩余水分子趋向形成有序的排列来“分享”剩余的氢键,引起体系不稳定,故蛋白质倾向形成使疏水集团远离溶剂水的构象。因此,在水中,为了保持体系的稳定,蛋白质分子多是以亲水基团同溶剂水分子接触的,起可溶性增加。当溶液体系温度上升时,熵效应随之加强。一旦超过临界温度(50-60摄氏度),因水分子的有序度已经降低很多了,疏水基团就可以进入水中了,这时蛋白质就析出了。

请问每100克黄豆(干)含多少蛋白质,湿的呢?

All the protein content in soybean is against the dry weight. What you said 40 grams protein in 100 grams of dry soybean is true.Regarding the wet, you have to figure it out how much dry soybean you soaked. The absolute protein will not change after wet.

SDS-聚丙烯酰胺凝胶电泳和凝胶层析方法分离蛋白质的异同点。

凝胶层析的固定相是惰性的珠状凝胶颗粒,凝胶颗粒的内部具有立体网状结构,形成很多孔穴。当含有不同分子大小的组分的样品进入凝胶层析柱后,各个组分就向固定相的孔穴内扩散,组分的扩散程度取决于孔穴的大小和组分分子大小。比孔穴孔径大的分子不能扩散到孔穴内部,完全被排阻在孔外,只能在凝胶颗粒外的空间随流动相向下流动,它们经历的流程短,流动速度快,所以首先流出;而较小的分子则可以完全渗透进入凝胶颗粒内部,经历的流程长,流动速度慢,所以最后流出;分子越大的组分越先流出,分子越小的组分越后流出。聚丙烯酰胺凝胶电泳不是通过凝胶颗粒内部的孔穴保留小分子的,聚丙烯酰胺凝胶是通过三维网状结构分离,所以小分子先出,大分子比较慢出。

凝胶色谱法分离蛋白质原理

凝胶色谱法分离蛋白质原理:大分子物质由于直径较大,不易进入凝胶颗粒的微孔,而只能分布颗粒之间,所以在洗脱时向下移动的速度较快。小分子物质除了可在凝胶颗粒间隙中扩散外,还可以进入凝胶颗粒的微孔中,即进入凝胶相内,在向下移动的过程中,从一个凝胶内扩散到颗粒间隙后再进入另一凝胶颗粒,如此不断地进入和扩散,小分子物质的下移速度落后于大分子物质,从而使样品中分子大的先流出色谱柱,中等分子的后流出,分子最小的最后流出。

凝胶色谱法分离蛋白质的依据是

【答案】B【答案解析】试题分析:凝胶色谱法是根据相对分子量的大小分离蛋白质的方法之一。相对分子质量较小的蛋白质容易进入凝胶内部的通道,路程较长,移动速度较慢;而相对分子质量较大的蛋白质无法进入凝胶内部的通道,只能在凝胶外部移动,路程较短,移动速度较快。故选B考点:本题考查凝胶色谱法的原理。点评:本题意在考查考生的识记能力和理解能力,属于容易题。

凝胶层析法为什么能测出蛋白质的分子量?原理是什么?

原理简单说就是分子量不同通过凝胶柱的速度也不同凝胶是一种具有多孔,网状结构的分子筛.利用这种凝胶分子筛对大小,形状不同的分子进行层析分离,称凝胶层析 .凝胶层析的应用范围:凝胶层析法适用于分离和提纯蛋白质,酶,多肽,激素,多糖,核酸类等物质.分子大小彼此相差25%的样品,只要通过单一凝胶床就可以完全将它们分开.利用凝胶的分子筛特性,可对这些物质的溶液进行脱盐,浓缩,去热源和脱色.凝胶层析的优点凝胶层析具有设备简单,操作方便,分离迅速及不影响分子生物学活性等优点.目前已被广泛应用于各种生化产品的分离和纯化.-,凝胶层析的基本原理凝胶层析的原理l 分子大小不同混合物上柱; 2 洗脱开始,小分子扩散进人凝胶颗粒内,大分子被排阻于颗粒之外;3 大小分子分开: 4大分子行程较短,已洗脱出层析柱,小分子尚在进行中凝胶是一类多孔性高分子聚合物,每个颗粒犹如一个筛子.当样品溶液通过凝胶柱时,相对分子质量较大的物质由于直径大于凝胶网孔而只能沿着凝胶颗粒间的孔隙,随着溶剂流动,因此流程较短,向前移动速度快而首先流出层析柱;反之,相对分子质量较小的物质由于直径小于凝胶网孔,可自由地进出凝胶颗粒的网孔,在向下移动过程中,它们从凝胶内扩散到胶粒孔隙后再进入另一凝胶颗粒,如此不断地进入与逸出,使流量增长,移动速率慢而最后流出层析柱.而中等大小的分子,它们也能在凝胶颗粒内外分布,部分进入颗粒,从而在大分子物质与小分子物质之间被洗脱.这样,经过层析柱,使混合物中的各物质按其分子大小不同而被分离.

凝胶色谱法分离蛋白质的原理是蛋白质分子质量的大小 为什么不是蛋白质分子的大小呢??

你好,其实这个地方就是用相对分子质量衡量蛋白质分子大小的,基本认为蛋白质分子大小与分子质量呈正相关,虽然事实上并不如此。

凝胶色谱法原理为什么是根据蛋白质相对分子质量大小而不是分子大小。有什么区别

相对分子质量大小是指一种蛋白质上所有原子的相对原子量之和,而分子大小则是指蛋白质分子的体积大小。一般情况下相对分子质量大的蛋白质分子大小也大。所以我认为区别很小。

凝胶色谱法原理为什么是根据蛋白质相对分子质量大小而不是分子大小。有什么区别

相对分子质量大小是指一种蛋白质上所有原子的相对原子量之和,而分子大小则是指蛋白质分子的体积大小。一般情况下相对分子质量大的蛋白质分子大小也大。所以我认为区别很小。

凝胶色谱法分离蛋白质的原理是怎样的

  凝胶色谱法分离蛋白质的原理:由于蛋白质的形状、大小、吸附性质、亲和力等性质都有差别,所以不同分子量的蛋白质通过多孔凝胶颗粒的间隙的流动速度不同、路程长短也不同;分子量大的分子通过多孔凝胶颗粒的间隙的路程短,流动快;分子量小的分子穿过多孔凝胶颗粒内部的路程长,流动慢。   分子量是什么   分子量又叫做相对分子质量,也就是化学式中各个原子的相对原子质量的总和。对于某些结构复杂的生物大分子,往往都是通过电泳、离心或色谱分析等方法测得其近似分子质量。对于某些结构复杂的生物大分子,往往都是通过电泳、离心或色谱分析等方法测得其近似分子质量。   凝胶色谱法是什么   凝胶色谱法又叫凝胶色谱技术,凝胶色谱法又叫凝胶色谱技术,凝胶色谱法主要用于高聚物的相对分子质量分级分析以及相对分子质量分布测试。分子量大小不同的多种成分在通过凝胶床时,按照分子量大小“排队,凝胶表现分子筛效应。

胶体金法测蛋白质含量优缺点

胶体金法测蛋白质含量优点:1、具有较高的灵敏度,可达到毫微克水平,用于微量蛋白的测定。2、缺点:样品必须可溶,在大量糖类共存和含有脯氨酸的肽中显色不好。

测定蛋白质含量只有凯氏定氮法吗

1、常量凯氏定氮法2、微量凯氏定氮法3、自动凯氏定氮仪法4、双缩脲法5、紫外分光光度法6、染料结合法(阴离子染色法、考马斯亮蓝法)7、水杨酸比色法8、福林酚(Lowry)法9、BCA法10、茚三酮法11、比浊法12、杜马斯燃烧法13、红外光谱法具体的原理和方法就不说了,差不多就这么多了,应该是还有的。

二辛可酸法测定蛋白质含量

二辛可酸法测定蛋白质含量:蛋白质含量测定的方法有微量凯氏定氮法、双缩脲法、folin—酚试剂法、考马斯亮兰法、紫外吸收法等。1、微量凯氏定氮法:含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸铵。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。2、双缩脲法:双缩脲是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。3、folin—酚试剂法:这种蛋白质测定法是最灵敏的方法之一。过去此法是应用最广泛的一种方法,由于其试剂乙的配制较为困难,近年来逐渐被考马斯亮兰法所取代。4、考马斯亮兰法:1976年由bradford建立的考马斯亮兰法,是根据蛋白质与染料相结合的原理设计的。这一方法是目前灵敏度最高的蛋白质测定法。5、紫外吸收法:蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。吸收高峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。

常用的蛋白质含量测定方法有哪些

测定蛋白质的方法可分为两大类:一类是利用蛋白质的共性,即含氮量、肽键和折射率测定蛋白质含量;另一类是利用蛋白质中特定氨基酸残基、酸性和碱性基团以及芳香基团等测定蛋白质含量。常见的方法有:凯氏定氮法、双缩脲法、酚试剂法及紫外吸收法。1.凯氏定氮法准备4个50mL凯氏烧瓶并标号,想1、2号烧瓶中加入定量的蛋白质样品,另外两个烧瓶作为对照,在每个烧瓶中加入硫酸钾-硫酸铜混合物,再加入浓硫酸,将4个烧瓶放到消化架上进行消化,之后进行蒸馏,全部蒸馏完毕后用标准盐酸滴定各烧瓶中收集的氨量,直至指示剂混合液由绿色变回淡紫红色,即为滴定终点,结算出蛋白质含量。2.双缩脲法双缩脲法是第一个用比色法测定蛋白质浓度的方法,硫铵不干扰显色, Cu2+与蛋白质的肽键,以及酪氨酸残基络合,形成紫蓝色络合物,此物在540nm波长处有最大吸收。首先利用标准蛋白溶液和双缩脲试剂绘制标准曲线,将待测血清与硫酸钠在待测试管中混合,并用只加入硫酸钠不含血清的试管作为对照,将两支试管加入等量的双缩脲试剂,充分混合后于37℃环境中放置10分钟,在540nm波长进行比色,以对照管调零,读取吸光度值,由标准曲线上直接查出蛋白质含量。双缩脲法常用于0.5g/L~10g/L含量的蛋白质溶液测定。3.酚试剂法取6支试管分别标号,前5支试管分别加入不同浓度的标准蛋白溶液,最后一支试管加待测蛋白质溶液,不加标准蛋白溶液,每支试管液体总量通过加入蒸馏水补足而保持一致,将液体混合均匀,在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于650nm波长处测定各管中溶液的吸光度值4.紫外吸收法大多数蛋白质在280nm波长处有特征的最大吸收,这是由于蛋白质中有酪氨酸,色氨酸和苯丙氨酸存在,可用于测定0.1~0.5mg/mL含量的蛋白质溶液。取9支试管分别标号,前8支试管分别加入不同浓度的标准蛋白溶液,1号试管不加标准蛋白溶液,最后一支试管加待测蛋白质溶液,而不加标准蛋白溶液,每支试管液体总量通过加入蒸馏水补足而保持一致,将液体混合均匀,在280nm波长处进行比色,记录吸光度值。5.其他除了以上介绍的方法之外,考马斯亮蓝法、二喹啉甲酸法等均可用于蛋白质测定。

蛋白质测定的结果计算为什么要乘上蛋白质系数

由于蛋白质不能直接进行检测,需要检测其中氮的含量再换算成蛋白质,蛋白质中氮的含量一般在16%左右,也就是说一般情况下氮的含量乘以6.25(100÷16=6.25)得出的数就是蛋白质数。

酸碱滴定法牛奶中的蛋白质原理步骤?

楼上的说的很对,而且,没有什么酸碱滴定法测牛奶的蛋白质。

食品中蛋白质含量的测定

食品中蛋白质的测定如下:蛋白质的检测原理是基于食品中蛋白质含量与食品中氮含量的比例关系换算的。如乳中蛋白质与氮含量的比值为6.38,大豆中蛋白质与氮含量的比值为5.71,普通食品中蛋白质与氮含量的比值为6.25。因此是通过测定食品中氮含量后再根据换算系数得到食品中蛋白质含量。蛋白质是含氮的有机化合物。食品与硫酸和硫酸铜、硫酸钾一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后以硫酸或盐酸标准滴定溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质的含量。蛋白质的检测方法:1、凯氏定氮法:样品在高温浓硫酸的消化作用下,将样品中的有机氮转化为无机铵,待消化液冷却后,加入过量的碱,使无机铵转化为挥发性的氨,再将氨蒸出后,利用盐酸标准溶液滴定,最后根据消耗的盐酸标液体积推算样品中的氮含量。2、杜马斯定氮法:样品在高纯氧中充分燃烧的过程中,将氮元素转化为氮气或氮氧化物,再经过高温铜的还原,使所有的氮转化为N2,然后利用热导检测器检测N2的含量来推算样品中氮含量。因此杜马斯定氮法也称为杜马斯燃烧法或燃烧定氮法。

测定蛋白质最后滴定时用硼酸滴的话结果会比用硫酸低多少

你好  ①凯氏定氮法   原理:蛋白质平均含氮量为16%。当样品与浓硫酸共热,蛋白氮转化为铵盐,在强碱性条件下将氨蒸出,用加有指示剂的硼酸吸收,最后用标准酸滴定硼酸,通过标准酸的用量即可求出蛋白质中的含氮量和蛋白质含量。   ②双缩脲法   原理:尿素在180℃下脱氨生成双缩脲,在碱性溶液中双缩脲可与Cu2+形成稳定的紫红色络合物。蛋白质中的肽键实际上就是酰胺键,故多肽、蛋白质等都有双缩脲(biuret)反应,产生蓝色或紫色复合物。比色定蛋白质含量。   缺点:灵敏度低,样品必须可溶,在大量糖类共存和含有脯氨酸的肽中显色不好。其 精确度 较差 (数mg),且会受样品中 硫酸铵 及 Tris 的干扰,但 准确度 较高,不受蛋白质的种类影响。   ③Folin酚法(Lowry)   Folin酚法是biuret 法的延伸,所用试剂由试剂甲和乙两部分组成。试剂甲相当于双缩脲试剂(碱性铜试剂),试剂乙中含有磷钼酸和磷钨酸。   在碱性条件下,蛋白质中的巯基和酚基等可将Cu2+还原成Cu+, Cu+能定量地与Folin-酚试剂反应生成蓝色物质,600nm比色测定蛋白质含量。   灵敏度较高(约 0.1 mg),但较麻烦,也会受 硫酸铵 及 硫醇化合物 的干扰。 步骤中各项试剂的混合,要特别注意均匀...

凯氏定氮法测牛奶中蛋白质含量测定结果偏高是为什么

测定蛋白质的方法可分为两大类:一类是利用蛋白质的物理化学性质来推算,如密度、折射率、紫外吸收、荧光性等;另一类是利用化学方法来计算,如定氮、双缩脲反应、染料结合反应、酚试剂反应等 主要测定方法有:双缩脲法、染料结合法、酚试剂法、紫外分光光度法、水扬酸比色法、折光法、旋光法、近红外光谱法.目前蛋白质测定最常用的方法是凯氏定氮法,是通过测总氮量来确定蛋白质含量的方法。 凯氏定氮法是通过测出样品中的总含氮量再乘以相应的蛋白质系数而求出蛋白质的含量,此法的结果称为粗蛋白质含量:由于样品中含有少量非蛋白质含氮化合物,如核酸、生物碱、含氮类脂、卟啉以及含氮色素等非蛋白质的含氮化合物.凯氏定氮法是测定总有机氮量较为准确、操作较为简单的方法之一,可用于所有动、植物食品的分析及各种加工食品的分析,可同时测定多个样品,故国内外应用较为普遍,是个经典分析方法[6]。至今仍被作为标准检验方法.此法可应用于各类食品中蛋白质含量测定凯氏定氮法可分为全量法、微量法及经改进后的改良凯氏定氮法目前通常以硫酸铜作催化剂的常量、半微量、微量凯氏定氮法样品质量及试剂用量较少,且有一套微量凯氏定氮器。在凯氏法改良中主要的问题是,氮化合物中氮的完全氨化问题及缩短时间、简化操作的问题,即分解试样所用的催化剂。常量改良凯氏定氮法在催化剂中增加了二氧化钛[4].在理化实验室,检验食品中蛋白质的含量通常用微量凯氏定氮法和全量凯氏定氮法.接下来以大量的试验来比较微量凯氏定氮法和全量凯氏定氮法的精确度的大小.1.材料与方法:1.1试验材料1.1.1试验样品面粉1.1.2试验药品和试剂所有试剂均为分析纯;水为蒸馏水或同等纯度的水。硫酸铜;硫酸钾;浓硫酸;40%氢氧化钠溶液:称取40g氢氧化钠溶于60ml蒸馏水中;4%硼酸溶液:称取4g硼酸溶于蒸馏水中稀释至looml;0.1mol/l盐酸标准滴定溶液;甲基红次甲基蓝混合指示液:将次甲基蓝乙醇溶液(1g/l)与甲基红乙醇溶液(1g/l)按1 2体积比混合。1.1.3仪器和设备: 实验室常规仪器及下列各项:凯氏烧瓶:500ml;可调式电炉;蒸汽蒸馏装置;铰肉机:篦孔径不超过4nm;组织捣碎机;粉碎机;研钵:玻璃或瓷质;化学消化器,凯氏定氮仪,空气滤过器1.2试验方法 1.2.1微量凯氏定氮法微量凯氏定氮法的原理 样品与浓硫酸和催化剂一同加热消化,使蛋白质分解,其中碳和氢被氧化为二氧化碳和水逸出,而样品中的有机氮转化为氨与硫酸结合成硫酸铵。然后取消化液的1/10加碱蒸馏,使氨蒸出,用硼酸吸收后再以标准盐酸或硫酸溶液滴定[2]。根据标准酸消耗量可计算出蛋白质的含量。包括消化、蒸馏、吸收、滴定四个步骤 1.2.2全量凯氏定氮法全量凯氏定氮法的原理 样品与浓硫酸和催化剂一同加热消化,使蛋白质分解,其中碳和氢被氧化为二氧化碳和水逸出,而样品中的有机氮转化为氨与硫酸结合成硫酸铵。然后取消化液的全部加碱蒸馏,使氨蒸出,用硼酸吸收后再以标准盐酸或硫酸溶液滴定。根据标准酸消耗量可计算出蛋白质的含量。包括消化、蒸馏、吸收、滴定四个步骤2 分析过程试样制备:固体样品:取有代表性的样品至少200g,用研钵捣碎、研细;不易捣碎、研细的样品应切(剪)成细粒;干固体样品用粉碎机粉碎;液体样品:取充分混匀的液体样品至少200g。粉状样品:取有代表性的样品至少200g(如粉粒较大也应用研钵研细),混合均匀;糊状样品:取有代表性的样品至少200g,混合均匀;固液体样品:按固、液体比例,取有代表性的样品至少200g,用组织捣碎机捣碎,混合均匀;肉制品:取去除不可食部分、具有代表性的样品至少200g,用铰肉机至少铰两次,混合均匀。上述试样应放入密闭玻璃容器中,于4°c冰箱内贮存备用,尽快测定。2.1微量凯氏定氮法的分析过程 2.1.1样品消化 :步骤:准确称取一定量的样品,加入硫酸铜0.5g、硫酸钾10g和浓硫酸20ml、玻璃珠数粒→小心移入干燥洁净的500ml凯氏烧瓶中(固体或粉末用纸卷成纸筒送入),轻轻摇匀,以45

三聚氰胺可以增加蛋白质含量的原理

现在我国检测蛋白质含量的方式为凯氏定氮法,就是检测其中含的氮的多少,而氮是蛋白质区别于其他营养物质的元素。一个三聚氰胺分子含有三个氮原子。在检测中可以提高氮元素的含量。而且,三聚氰胺无色无味,不容易识别含有三聚氰胺和不含有三聚氰胺的牛奶。

用凯氏微量定氨法测得0.2ml血清中含氮2.1mg,问100ml血清中含蛋白质多少克?

1.蛋白质中氮元素平均质量占比为16 %2.凯氏定氮法就是利用这一原理3. 2.1 mg氮元素也就是13.125mg蛋白质4.因此,100ml血清中含有6562.5mg蛋白质

怎样用凯氏定氮法测定蛋白质含量?

即在有金属催化剂的标准下,用硫酸消化吸收试品将有机化学氮都转化成无机物氨盐,随后在偏碱标准下将氨盐转换为氨,随水蒸气蒸馏出去并为过多的硼酸溶液液消化吸收,再以标准盐酸滴定管,就可测算出试品中的氮量。因为蛋白中氮量较为稳定,可由其氮量计算蛋白质含量,故此方法是经典的蛋白定量分析方式。

微量凯氏定氮法的测定结果通常会高于样品蛋白质的实际含量为什么?

凯氏定氮法原理是:通过测氮的含量而得出蛋白质含量. 公式:蛋白质含量=蛋白氮X6.25(注:氮元素占蛋白质中组成百分比为16%,式子中的6.25是16%的倒数) 凯氏定氮法测定的氮,包括蛋白质中的氮还有样品中其它的氮.所以测得结果高于样品蛋白质的实际含量

微量凯氏定氮法的测定结果通常会高于样品蛋白质的实际含量为什么?

凯氏定氮法原理是:通过测氮的含量而得出蛋白质含量. 公式:蛋白质含量=蛋白氮X6.25(注:氮元素占蛋白质中组成百分比为16%,式子中的6.25是16%的倒数) 凯氏定氮法测定的氮,包括蛋白质中的氮还有样品中其它的氮.所以测得结果高于样品蛋白质的实际含量

为什么标准蛋白质必须用凯氏定氮法测定纯度

首先,因为蛋白质当中含有氮,而且因为氮的含量与蛋白质的含量几乎呈线形相关。所以标准蛋白质通常用凯氏定氮法测定纯度。

试述用凯氏定氮法测定面粉中蛋白质含量的原理,简要步骤和计算公式。

面粉与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后再以硫酸或盐酸标准溶液滴定。 1、 样品处理:精密称取0.2-2.0g固体样品或2-5g半固体样品或吸取10-20ml液体样品(约相当氮30-40mg),移入干燥的100ml或500ml定氮瓶中,加入0.2g硫酸铜,6g硫酸钾及20毫升硫酸,稍摇匀后于瓶口放一小漏斗,将瓶以45度角斜支于有小孔的石棉网上,小火加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色澄清透明后,再继续加热0.5小时。取下放冷,小心加20ml水,放冷后,移入100ml容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同量的硫酸铜、硫酸钾、浓硫酸同一方法做试剂空白试验。   2、 装好定氮装置,于水蒸气发生器内装水约2/3处加甲基红指示剂数滴及数毫升硫酸,以保持水呈酸性,加入数粒玻璃珠以防暴沸,用调压器控制,加热煮沸水蒸气发生瓶内的水。  3、 向接收瓶内加入10ml 2%硼酸溶液及混合指示剂1滴,并使冷凝管的下端插入液面下,吸取10.0ml样品消化液由小玻璃杯流入反应室,并以10ml水洗涤小烧杯使流入反应室内,塞紧小玻璃杯的棒状玻璃塞。将10ml 40%氢氧化钠溶液倒入小玻璃杯,提起玻璃塞使其缓慢流入反应室,立即将玻璃盖塞紧,并加水于小玻璃杯以防漏气。夹紧螺旋夹,开始蒸馏,蒸气通入反应室使氨通过冷凝管而进入接收瓶内,蒸馏5min。移动接收瓶,使冷凝管下端离开液皿,再蒸馏1min,然后用少量水冲洗冷凝管下端外部。取下接收瓶,以0.01N硫酸或0.01N盐酸标准溶液定至灰色或蓝紫色为终点。   同时吸取10.0ml试剂空白消化液按3操作。 X =((V1-V2)*N*0.014)/( m*(10/100)) *F*100%    X:样品中蛋白质的百分含量,g;   V1:样品消耗硫酸或盐酸标准液的体积,ml;   V2:试剂空白消耗硫酸或盐酸标准溶液的体积,ml;   N:硫酸或盐酸标准溶液的当量浓度;   0.014:1N硫酸或盐酸标准溶液1ml相当于氮克数;   m:样品的质量(体积),g(ml);   F:氮换算为蛋白质的系数。蛋白质中的氮含量一般为15~17.6%,按16%计算乘以6.25即为蛋白质,乳制品为6.38,面粉为5.70,玉米、高粱为6.24,花生为5.46,米为5.95,大豆及其制品为5.71,肉与肉制品为6.25,大麦、小米、燕麦、裸麦为5.83,芝麻、向日葵为 5.30。

凯氏定氮法测定食品中蛋白质含量的原理和基本操作方法是什么?

原理:有机含氮化合物与浓硫酸共热消化,氮转化为氨,再与硫酸结合成硫酸铵。硫酸铵与强碱反应,放出氨。将氨蒸馏到过量的标准无机溶液中,再用标准碱溶液进行滴定。根据测得的氨量,计算样品的总氮量。、试剂与材料:浓硫酸、硫酸钾-硫酸铜粉末(称取80g硫酸钾和20g硫酸铜(五水),0.3g二氧化硒研细混合)、30%氢氧化钠溶液、2%硼酸溶液、0.01M标准盐酸、混合指示剂(田氏指示剂)储存液(取50ml0.1%甲烯蓝乙醇溶液与200ml0.1%甲基红溶液混合,储存于棕色瓶中备用。此指示剂在PH5.2为紫色;PH为5.4为暗灰色或灰色;PH5.6为绿色;变色点为PH5.4)、硼酸-田氏指示剂混合液(100ml2%硼酸溶液,滴加约1ml田氏指示剂,摇匀后,溶液呈紫红色)、蛋白质样品、容量瓶、吸管、凯氏烧瓶、凯氏定氮蒸馏装置、微量滴定管、电炉三、操作方法1、样品处理:固体样品,应在105℃干燥至恒重。液体样品可直接吸取一定量,也可经适当稀释后,吸取一定量进行测定,使每一样品的含氮量在0.2-1.0mg范围内。2、消化:取一定量样品,于50ml干燥的凯氏烧瓶内。加入300mg硫酸钾-硫酸铜混合粉末,再加入3ml浓硫酸。用电炉加热,在通风厨中消化,瓶口加一小漏斗。先以文火加热,避免泡沫飞溅,不能让泡沫上升到瓶颈,待泡沫停止发生后,加强火保持瓶内液体沸腾。时常转动烧瓶使样品全部消化完全,直至消化液清澈透明。另取凯氏瓶一个,不加样品,其它操作相同,作为空白试验,用以测定试剂中可能含有的微量含氮物质,以对样品进行校正。3、蒸馏:将微量凯氏蒸馏装置洗涤(先用水蒸气洗涤)干净。将凯氏烧瓶中的消化液冷却后,全部转入100ml的容量瓶,用蒸馏水定容至刻度。吸取20ml稀释消化液,置于蒸馏装置的反应室中,加入10ml30%氢氧化钠溶液,将玻璃塞塞紧,于漏斗中加一些蒸馏水,作为水封。取一三角瓶,加入10ml硼酸-田氏指示剂混合液,置于冷凝管之下口,冷凝管口应浸没在硼酸液面之下,以保证氨的吸收。加热水蒸汽发生器,沸腾后,夹紧夹子,凯氏蒸馏。三角瓶中的硼酸-指示剂混合液,吸收蒸馏出的氨,由紫红色变为绿色。蒸馏15min,让硼酸液面离开冷凝管口,再蒸1-2min以冲洗冷凝管口。空白试验按同样操作进行。4、滴定:样品和空白均蒸馏完毕后,用0.01M标准盐酸滴定,至硼酸-指示剂混合液由绿色变回淡紫色,即为滴定终点。四、计算 样品总氮量(mg)=(A-B)×c×14×100/20式中:A:样品滴定时消耗的标准盐酸体积 B:空白滴定时消耗的盐酸体积 C:标准盐酸的当量浓度 14:氮的相对分子量 20:用于蒸馏的稀释消化液体积 100:稀释消化液的体积样品中粗蛋白含量(mg)=样品总氮量(mg)×6.25

蛋白质测定凯氏定氮法

蛋白质测定凯氏定氮法如下:凯氏定氮法原理:即在有催化剂的条件下,用浓硫酸硝化样品将有机氮都转变成无机铵盐,然后在碱性条件下将铵盐转化为氨。随水蒸气馏出并为过量的酸液吸收,再以标准酸滴定,就可计算出样品中的氮量。由于蛋白质含氮量比较恒定,可由其氮量计算蛋白质含量,故此法是经典的蛋白质定量方法。从凯氏定氮原理可以知道:凯氏定氮法是将含氮有机物转变为无机氮硫酸铵来进行检测,以得到含氮量的测定值乘以一定系数得出蛋白质含量。而含氮有机物不仅仅是蛋白质,还有三聚氰胺等等。在加上食品中蛋白质含量的现行国家标准和通行测定方法是经典凯氏定氮法。这就为造假者提供了可乘之机。蛋白质中的含氮量不超过30%,三聚氰胺的zui大的特点是含氮量很高(66%),溶于水后无色无味,也就是说在一杯清水中加入三聚氰胺,然后用凯氏定氮法检测,结果显示是含有蛋白质的。由于“凯氏定氮法”只能测出含氮量,并不能鉴定饲料中有无违规化学物质,所以,添加三聚氰胺的奶粉理论上可以测出较高的蛋白质含量。应用:凯氏定氮法的普遍适用性、性和可重复性已经得到了的广泛认可。它已经被确定为检测食品中蛋白质含量的标准方法。但是,这种方法并不能给出真实的蛋白质含量,因为所测定的氮可能不仅仅是由蛋白质转化来的。

凯氏定氮法测食品的蛋白质,如何避免非蛋白氮影响测定结果?

针对你这个问题,我觉得你应该是要测真蛋白的含量。测定方法如下 一、测定原理 硫酸铜在碱性溶液中,可将蛋白质沉淀,且不溶于热水,过滤和洗涤后,可将纯蛋白质和非蛋白质含氮物分离,再用凯氏定氮法测定沉淀中的蛋白质含量。 二、仪器设备 (1)烧杯:200mL。 (2)定性滤纸。 (3)其它设备与粗蛋白质测定性相同。 三、试剂及配制 (1) 100g/L硫酸铜溶液:分析纯硫酸铜(CuSO4 5H2O)10g溶于100mL水中。 (2) 25g/L氢氧化钠溶液:将2.5g分析纯氢氧化钠溶于100mL水中。 (3) 10g/L氯化钡溶液:1g氯化钡(BaCl2 H2O)溶于100mL水中。 (4) 2mol/L盐酸溶液。 (5) 其它试剂与一般粗蛋白质测定法相同。 四、测定步骤 准确称取试样1g左右(精确至0.0001g),置于200mL烧杯中,加50mL水,加热至沸,加入20mL硫酸铜溶液,20mL氢氧化钠溶液,用玻璃棒充分搅拌,放置1小时以上,用倾斜过滤(用定性滤纸),然后用60-80℃热水洗涤沉淀5-6次,用氯化钡溶液5滴和盐酸溶液1滴检查滤液,直到不生成白色硫酸钡沉淀为止。将沉淀和滤纸放在65℃烘箱干燥2小时,然后全部转移到凯氏烧瓶中,消化后进行氮测定。 五、结果计算 同粗蛋白质测定。这是我的答案,请采纳!

检测食品中蛋白质含量的原理和方法是什么?

凯氏定氮法,原理是蛋白质中氮元素的含量比较稳定,大约 是16%左右,倒数就是6.25,所以,检测出氮含量后,乘以6.25就是粗蛋白含量了

通用的蛋白质测试方法“凯氏定氮法”是通过测出含氮量来估算蛋白质含量,因此,添加三聚氰胺会使得食品的

根据反应的化学方程式:(NH4)2SO4+2NaOH═2NH3+2H2O+X,反应物中氮原子、氢原子、硫原子、氧原子、钠原子个数分别为2、10、1、6、2,反应后的生成物中氮原子、氢原子、硫原子、氧原子、钠原子个数分别为2、10、0、2、0,根据反应前后原子种类、数目不变,则X中含有1个硫原子、4个氧原子和2个钠原子,则X的化学式为Na2SO4;同理可推得Y的化学式是H2O.故答案为:Na2SO4;H2O.

凯氏定氮法测定蛋白质含量时,蒸馏时间

120分钟。原理是有机含氮化合物与浓硫酸共热消化,氮转化为氨,再与硫酸结合成硫酸铵。硫酸铵与强碱反应,放出氨,将氨蒸馏到过量的标准无机溶液中,再用标准碱溶液进行滴定,根据测得的氨量,计算样品的总氮量。蛋白质被认为是构成生物体细胞组织的重要成分,食物中的蛋白质是人体中氮的唯一来源,具有糖类和脂肪不可替代的作用,含氮量是蛋白质区别于其他有机化合物的重要标志,在检验食品中蛋白质时,通常是先检定出食品中的总氮量,然后乘以蛋白质换算系数,以此得到蛋白质含量,凯氏定氮法由Kieldahl于1883年首先提出,至今仍被作为标准检验方法,凯氏定氮法测定蛋白质分为样品消化、蒸馏、吸收和滴定过程。

用 凯式定氮法 检验蛋白质含量的原理是什么?又有什么弊端呢?

把蛋白质中氮转换为无机物测量很明显,比如三聚氰胺冒充蛋白质

凯氏定氮法如何测定蛋白质的含量?

一、原理:有机含氮化合物与浓硫酸共热消化,氮转化为氨,再与硫酸结合成硫酸铵。硫酸铵与强碱反应,放出氨。将氨蒸馏到过量的标准无机溶液中,再用标准碱溶液进行滴定。根据测得的氨量,计算样品的总氮量。二、试剂与材料:浓硫酸、硫酸钾-硫酸铜粉末(称取80g硫酸钾和20g硫酸铜(五水),0.3g二氧化硒研细混合)、30%氢氧化钠溶液、2%硼酸溶液、0.01M标准盐酸、混合指示剂(田氏指示剂)储存液(取50ml0.1%甲烯蓝乙醇溶液与200ml0.1%甲基红溶液混合,储存于棕色瓶中备用。此指示剂在PH5.2为紫色;PH为5.4为暗灰色或灰色;PH5.6为绿色;变色点为PH5.4)、硼酸-田氏指示剂混合液(100ml2%硼酸溶液,滴加约1ml田氏指示剂,摇匀后,溶液呈紫红色)、蛋白质样品、容量瓶、吸管、凯氏烧瓶、凯氏定氮蒸馏装置、微量滴定管、电炉生物帮有这方面的专题,你去了解下吧, http://www.bio1000.com/zt/disease/ 疾病机理,疾病研究。

微量凯氏定氮法的测定结果通常会高于样品蛋白质的实际含量为什么?

凯氏定氮法原理是:通过测氮的含量而得出蛋白质含量。公式:蛋白质含量=蛋白氮X6.25(注:氮元素占蛋白质中组成百分比为16%,式子中的6.25是16%的倒数)凯氏定氮法测定的氮,包括蛋白质中的氮还有样品中其它的氮。所以测得结果高于样品蛋白质的实际含量

凯氏定氮法测定蛋白质含量的基本原理

样品与浓硫酸和催化剂一同加热消化,使蛋白质分解,其中碳、氢被氧化为CO2和H2O逸出,而样品中的有机氮转化为氨与硫酸结合成硫酸铵,硫酸铵用NaOH中和生成NH3`H2O,加热又分解为氨,用硼酸吸收,吸收氨后的硼酸再以标准盐酸或硫酸溶液滴定,根据标准酸消耗量计算蛋白质的含量。

蛋白质的测定凯氏定氮法

蛋白质的测定凯氏定氮法如下:原理:向样品中加入浓硫酸和催化剂,充分混匀,然后加热消化分解,样中碳和氢被氧化成二氧化碳和水,其中的有机氮转化为硫酸铵。碱化蒸馏使氨游离,用硼酸吸收后以硫酸或盐酸标准滴定溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质的含量。消化液中的硫酸铵在碱性环境下会转化成氨。为防止水中微量的氨气受热逸出,影响测定结果,所以水蒸气发生器中的水要保持酸性。硫酸铵是一种强酸弱碱盐,需要足够的碱液使结合态的氨完全反应并释放出来。这个过程中的氢氧化钠一定要过量,过量的氢氧化钠会与硫酸铜生成蓝色的氢氧化铜沉淀,氢氧化铜受热分解成黑色的氧化铜沉淀。检验蒸馏是否完成,可用奈氏试纸法,NH4+或NH3遇奈氏试剂会反应生成棕红色的碘化汞铵化合物。蛋白质:蛋白质是生命的物质基础,也是一种有机大分子,是构成细胞的最基本的物质。蛋白质是组成人体一切组织细胞的重要成分,机体所有的重要组成部分都需要蛋白质的参与。从占比来看,蛋白质约占人体全部质量的18%左右。蛋白质是一种比较复杂的有机化合物,其中氨基酸是组成蛋白质的基本单位。从元素组成来看,蛋白质主要是由碳、氢、氧、氮、磷、硫、铁、锌、铜等微量元素组成。

蛋白质为什么能进行电泳

蛋白质样品的制备主要包括分离和纯化两大步骤.前者是从生物体中提取出蛋白质,后者是提纯某一种目标蛋白. 1 蛋白质带有电荷,是两性分子,因此能够在电场中运动,因此能够电泳. 2 双向电泳中的第一向(等电聚焦)利用了蛋白质在不同pH值下带有不同的电荷,从而可以在等电聚焦中停止在蛋白分子不带电的pH值带上.而第二项(SDS-PAGE)则是利用不同大小的蛋白质在PAGE胶中泳动速率不同,即通过蛋白质分子量大小来区分. 3 聚丙烯凝胶电泳的基本原理是蛋白质在聚丙烯酰胺凝胶中,可因为自身大小缘故在凝胶的孔洞中运动,越大的蛋白受到的阻力越大,因此泳动越慢,从而分离蛋白.SDS的作用是变性蛋白,并中和电性,使得蛋白质的泳动速率只决定于其分子量大小.

分子筛层析和SDS-聚丙烯酰胺凝胶电泳皆可用于测定蛋白质分子量,其原理有何差异?各自特点和适用范围

分子筛层析,又称凝胶层析、排阻凝胶层析、凝胶过滤,利用凝胶把物质按分子大小不同进行分离的 一种方法。由于被分离物质的分子大小(直径)和形状不同,洗脱时,大分子物质由于直径大于凝 胶网孔而不能进入凝胶内部,只能沿着凝胶颗粒间的孔隙,随溶剂向下移动,因此流程短,首先流 出层析柱,而小分子物质,由于直径小于凝胶网孔,能自由进入胶粒网孔,使之洗脱时流程增长, 移动速度变慢而后流出层析柱。 可用于测定氨基酸,脱盐和浓缩,分离提纯生物大分子,除去热源物质 SDS-PAGE,SDS-聚丙烯酰胺凝胶电泳的原理是当SDS 与蛋白质结合后,蛋白质分子即带有大量的负 电荷,并远远超过了其原来的电荷,从而使天然蛋白质分子间的电荷差别就降低乃至消除了,与此 同时蛋白质在 SDS 作用下结构变得松散,形状趋向一致,所以各种 SDS-蛋白质复合物在电泳时产生的脉动率差异,就反映了分子量的大小。 可用于测PH 值和蛋白质的亚基数。

sds-page电泳技术分离蛋白质是根据蛋白质什么性质不同

蛋白质性质包括:稳定性(Stability),活性(Activity),分子量(MW),疏水性(Hydrophobicity),等电点(pI),二硫键(Disulfide linkage)SDS-PAGE时,因为SDS可以断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。所以和蛋白质的稳定性,活性,疏水性,等电点都没关系。而2-ME是还原剂,能使半胱氨酸残基间的二硫键断裂,所以和二硫键也没有关系。综上所述SDS-PAGE电泳技术是根据蛋白质的分子量不同来分离蛋白质的。

为什么sds-page会不受蛋白质分子所带电荷及分子形状影响

影响带电化合物”电泳“迁移率的内在因素有三点,即带净电荷的多少、分子量的大小和分子的形状。SDS-蛋白质复合物具有均一的电荷密度,相同的荷质比。据计算,结合到蛋白质上的 SDS的分子数目和蛋白质分子的氨基酸残基的比例值一般为 0.5。另外根据流体力学的研究,SDS-蛋白质复合物具有扁平而紧密的椭圆形或棒状结构,棒的短轴是恒定的,在 1.8nm 的数量级,与蛋白质的种类无关,棒的长轴是变化的,而长轴的变化正比于蛋白质的分子量。这说明 SDS 和蛋白质结合所形成的 SDS-蛋白质复合物消除了由于天然蛋白质形状的不同而对电泳迁移率的影响。当蛋白分子量在 15 kDa~200 kDa 时,电泳迁移率与分子量的对数呈直线关系,符合方程式:lgMr=K-bRm,其中 Mr 是蛋白分子量,K 是常数,b 是斜率,Rm 是相对迁移率。在电泳条件一定时,b 和 K 均为常数。故在SDS-PAGE中,由于 SDS 和蛋白质的结合,消除了蛋白质所带净电荷的多少和分子形状不同对电泳迁移率的影响,使其电泳迁移率在外界条件固定的情况下,只取决于蛋白质分子量的大小一个因素,因而使我们能通过已知分子量的标准蛋白质分子建立的分子量与迁移率的线性关系求得未知蛋白质的分子量。上面是我copy来的,参考资料我也不清楚。

SDS-PAGE测定蛋白质分子量的基本原理是什么?简述一下主要步骤

蛋白质在聚丙烯酰胺凝胶中电泳时,它的迁移取决于它所带电荷以及分子大小和形状等因素。1967年Shapiro等人发现,如果在聚丙烯酰胺系统中加入阴离子去污剂十二烷基磺酸钠(SDS),大多数蛋白质能与SDS按一定比例结合,即每克蛋白质结合1.4g的SDS-复合物都带上相同密度的负电荷,它的量大大超过了蛋白质分子原有的电荷量,因而消除了蛋白质原有的电荷差别,使蛋白质分子电泳的迁移率主要取决于本身的分子量,而与蛋白质所带的电荷无关,在一定条件下,蛋白质的分子量的对数与电泳迁移率间呈负相关。操作步骤1、凝胶制备:用两块电泳玻璃板制成垂直板槽(不能漏胶),垂直放置。将配制好的分离胶溶液倒入,滴加入无离子水,待凝胶聚集后,倒出无离子水,用吸水纸吸干,倒入浓缩胶,再插入梳子。2、上样:分别取样品若干ml于离心管中,按1/1~1/5比例加入5×样品缓冲液,再沸水浴中加热3~5min,取出待用。用微量注射器分别吸取不超过30μl不同浓度的标准蛋白样品和试验样品注入样品槽。点样结束后,调节电泳仪电流到10mA(2~3mA/em),保持电流稳定不变,当溴酚蓝迁移到离分离胶底1~2cm时,即可停止电泳。3、染色:电泳完毕后,取出凝胶板,浸入染色液中,在37℃温箱中保温过夜。倒掉染色液,24h后,即可看到清晰的蛋白质条带。

SDS-PAGE测定蛋白质分子量中,电泳的不连续系统产生的三种效应分别是什么?

电泳法分离蛋白质是根据蛋白质的什么原理:一般是通过生化方法吧蛋白提取出来,蛋白质带有电荷么,是将混合样品中的蛋白质,其原理是第一向基于蛋白质pi不同用等电聚焦,电泳时的正极与负极都会发生电解反应,向着与其电性相反的电极移动的现象称为电泳。是根据蛋白质的电荷不同即酸碱性质不同分离蛋白质混合物的方法。1、电泳:在外电场的作用下,带点颗粒将向着与其电性相反的电极移动,这种现象称为电泳。电泳技术可用于氨基酸、肽、蛋白质和核苷酸等生物分子的分析分离和制备。区带电泳是由于在支持物上电泳蛋白质混合物被分离为若干区带。电泳前用缓冲液浸润薄膜或滤纸等支持物或用缓冲液直接配置成凝胶,将待分离的蛋白质样品加在它的一端或中央,支持物的两端与电极连接,通电电泳。电泳完毕,各个组分分布在不同的区域,用显色剂(蛋白质可用考马斯亮蓝或氨基黑等染色)显色后可以显示出各个组分。氨基酸混合物特别是寡聚核苷酸混合物一次电泳往往不能完全分开。这种情况可以将第一次电泳分开的斑点通过支持介质间的接触印迹转移到第二个支持介质上,旋转90°,进行第二次电泳。这种方法称为双向电泳。2、聚丙烯酰胺凝胶电泳:以聚丙烯酰胺凝胶为支持物,一般制成凝胶柱或凝胶板,凝胶是由相连的两部分组成(小的部分是浓缩胶,大的部分为分离胶),这两部分凝胶的浓度、缓冲液组分和离子强度、ph以及电场强度都是不同的,即不连续性。电泳时样品首先在不连续的两相间积聚浓缩而成很薄的起始区带,然后再进行电泳分离。电泳有三种物理效应:1、样品的浓度效应;2、凝胶对被分离分子的筛选效应;3、一般电泳分离的电荷效应。3、毛细管电泳:高效毛细管电泳、毛细管区带电泳、自由溶液毛细管电泳、毛细管电泳,可分离氨基酸、肽、蛋白质、dna片段和核酸以及多种小分子,也可用于手性化合物的分离。毛细管减少了由于热效应产生的许多问题,可以提高热散失,有助于消除由于热引起的扩散增加而造成的对流和区带变宽,因此管中不需要加入稳定介质即可进行自由流动电泳。电泳迁移引起溶液中荷电分子向相反电荷的电极移动,虽然被分析样品因电泳迁移而分离,然而电渗作用使溶液向负极流动,而且电渗电流很强,其速度一般比样品的电泳速率答,因此所有的正、负离子和中性分子都被推向负极。对荷正电分子来说,电泳迁移和电渗流效果是一致的,而且移动最快,最先达到负极。随着被分离的分子接近负极,它们都将通过紫外检测器并把信号传递给记录仪。所得结果是被分离组分的紫外吸收对时间的峰谱。4、等点聚焦(ief)分离蛋白质混合物是在具有ph梯度的介质(如浓蔗糖溶液)中进行。在外电场作用下各种蛋白质将移向并聚焦在等于其等电点的梯度处,并形成一个很窄的区带。ph梯度制作一般利用两性电解质,它是脂肪族多胺和多羧类的同系物,它们具有相近但不相同的解离常数和等电点。在外电场作用下,自然形成ph梯度。5、层析聚焦:根据蛋白质的等电点差异分离蛋白质混合物的柱层析方法。原理:当用特种缓冲液滴洗填充在柱中的特种多缓冲交换剂时,就会在层析柱中自上而下自动的建立起连续的ph梯度;同时加在柱上端的蛋白质样品也随多缓冲液的展开按各自的等电点聚焦在相应的ph区段。并在展开过程中随ph梯度下移,蛋白质混合物的各组分先后从柱中流出,达到分离纯化的目的。

SDS-PAGE检测蛋白质分子量的基本原理

sds-page判定蛋白质的纯度:若该蛋白质是单肽链蛋白质,则电泳得到的只有一条蛋白带(两条色带:一条为溴酚蓝,一条为蛋白带);若得出多条电泳带,则应该用非sds-page进行电泳,得出单一蛋白带则为单一蛋白质sds-page判定蛋白质的分子量:定义:r=de/dor为迁移率,de为蛋白质电泳迁移距离,do为溴酚蓝电泳迁移距离则lgm=a-brm为蛋白质分子量,a、b为常熟,a、b可由标准蛋白质(已知分子量的蛋白质)的迁移率算出。若蛋白质为单肽链蛋白质,则m为其分子量;若蛋白质为多肽链蛋白质,则其分子量为各m之和

sds-page电泳分离蛋白质的原理,这种方法为什么可以测定蛋白质分子量

因为电池蛋白质通过这个可以监测出

电泳法分离混合蛋白质的基本原理是什么

电泳法分离蛋白质是根据蛋白质的什么原理:一般是通过生化方法吧蛋白提取出来,蛋白质带有电荷么,是将混合样品中的蛋白质,其原理是第一向基于蛋白质 PI 不同用等电聚焦,电泳时的正极与负极都会发生电解反应,向着与其电性相反的电极移动的现象称为电泳。

在蛋白质的分离鉴定技术中凝胶过滤和SDS-PAGE电泳均是利用凝胶,按照分子大小分离

您要这道其中的原理就理解了。凝胶过滤时小分子进入凝胶的孔隙,大分子则直接洗脱,所以大分子先出来。电泳是利用蛋白质带电荷受到电场力和凝胶阻滞的作用,大分子当然跑得慢了。这两种胶是完全不同的,虽然中文翻译都叫胶

是否所有的蛋白质都能用SDS—凝胶电泳法测定其相对分子质量?为什么?

这个问题我刚回答过一次:) SDS 凝胶电泳法测定的分子量是相对分子量,而且如果分子量如果太小或者>200Kd,一般都不会用PAGE来测定. ① SDS-PAGE测定分子量需要蛋白成条带,然后与标准分子量Marker条带位置进行比较来确定分子量大小. ② SDS-PAGE分离范围一般在15-200Kd,超过这个范围,蛋白条带都挤在一起了,无法进行准确比较. ③ 一些小分子量的蛋白倒是可以通过特殊的SD-PAGE来测定,目前最小的能到1kd. ④ SDS-PAGE测出的分子量是蛋白亚基分子量,如果一个蛋白由2个以上亚基组成,那么必须将两个亚基分子量相加,或者通过其他方法如凝胶过滤测定. 百度教育团队【海纳百川团】为您解答.

怎么看蛋白质电泳分析结果图,以及它的原理是什么

双向电泳就是等电聚焦电泳和SDS-PAGE的组合。1.先进行等电聚焦电泳(按照蛋白等电点pI分离):在胶中加入双性电解质溶液,加上电场后建立稳定PH梯度,蛋白质溶液加入后建立电场,蛋白以不同PI分离开来。2.然后再进行SDS-PAGE(按照分子大小):将上一步的胶加上横向电场,同一PI中聚集的蛋白,由于分子量不同而分开。经染色(一般是银染)得到的电泳图是个二维分布的蛋白质图。二维电泳使用于蛋白组学研究,对大批量蛋白筛选鉴定中存在很大优势,通过不同胶做对比,把不同处的胶割出来单独鉴定。

DNA电泳和蛋白质电泳有什么区别和联系

DNA电泳一般使用的都是琼脂糖凝胶电泳,电泳的驱动力靠DNA骨架本身的负电荷。蛋白质电泳(一般指SDS-PAGE)一般使用的都是聚丙烯酰胺凝胶电泳,电泳的驱动力靠与蛋白质结合的SDS上所携带的负电荷。所以相同点就是样品都是带负电荷的,从负极向正极移动,移动的距离都和样品的分子量有关。而且这两个电泳体系可以互相交换使用。进行大分子蛋白质电泳时,可以考虑换用琼脂糖凝胶,因为该体系孔径大。相反,如果需要精确到各位数碱基的DNA电泳也可以使用聚丙烯酰胺凝胶系统,因为使用该系统可以将相差一个碱基的两条DNA链分开。不同点首先是样品不同。这个就不用多说了。其次是结果的观察方法不同。DNA电泳普遍使用EB做染料,在紫外灯下观察;而蛋白电泳使用的考马斯亮蓝染色,还需要经过脱色步骤,不过观察起来比较简单。还有就是胶体系的差别,DNA电泳通常是一胶跑到底,而蛋白质电泳则会有分离胶和浓缩胶之区别。先说这么多,有不明白的你再问好了~回答补充:电泳中样品移动的本质确实是样品所携带的电荷。但是,区分这些条带直接可以用分子量而无需使用电荷数,是因为这些样品的电荷/分子量比都是恒定的了。以DNA分子为例,它在电泳中的移动是靠其骨架中磷酸所携带的负电荷来实现的,而这个磷酸分子又是每一个核苷酸中都有的,所以DNA分子所携带的负电荷数是由其核苷酸总数决定的。而且,DNA分子中核苷酸的组成动辄成百上千,在如此大的分子量面前,讨论单个核苷酸之间分子量的差别就显得毫无意义。这样,DNA分子中负电荷的量就可以用DNA的分子量来代替,反过来,DNA的分子量也就可以用DNA分子所携带的电荷来代替(一句话,DNA分子的电荷/分子量比是恒定的)。这在蛋白电泳中(特别是SDS-PAGE中)是一样的。在SDS-PAGE中,SDS将蛋白质变性成直线分子并紧密包裹于其上,使得其所携带的电荷与蛋白分子量成了一定的比例,剩下的就和核酸电泳一样了。至于为什么核酸的横着跑,蛋白竖着跑,个人认为最大的问题是蛋白制胶的过程导致的。蛋白制胶由于使用了两种不同的凝胶系统,所以需要一个水平的分界面。这个分界面在配胶的过程中是依靠异丙醇在重力作用下的压力下形成的。所以,一并就竖着跑了~~

电泳法分离蛋白质是根据蛋白质的什么原理

蛋白质性质包括:稳定性(stability),活性(activity),分子量(mw),疏水性(hydrophobicity),等电点(pi),二硫键(disulfidelinkage) sds-page时,因为sds可以断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。所以和蛋白质的稳定性,活性,疏水性,等电点都没关系。而2-me是还原剂,能使半胱氨酸残基间的二硫键断裂,所以和二硫键也没有关系。 综上所述sds-page电泳技术是根据蛋白质的分子量不同来分离蛋白质的。

sds-page电泳技术分离蛋白质是根据蛋白质什么性质不同

蛋白质性质包括:稳定性(Stability),活性(Activity),分子量(MW),疏水性(Hydrophobicity),等电点(pI),二硫键(Disulfide linkage) SDS-PAGE时,因为SDS可以断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。所以和蛋白质的稳定性,活性,疏水性,等电点都没关系。而2-ME是还原剂,能使半胱氨酸残基间的二硫键断裂,所以和二硫键也没有关系。 综上所述SDS-PAGE电泳技术是根据蛋白质的分子量不同来分离蛋白质的。

SDS-PAGE测定蛋白质分子量中,电泳的不连续系统产生的三种效应分别是什么

电泳法分离蛋白质是根据蛋白质的什么原理:一般是通过生化方法吧蛋白提取出来,蛋白质带有电荷么,是将混合样品中的蛋白质,其原理是第一向基于蛋白质pi不同用等电聚焦,电泳时的正极与负极都会发生电解反应,向着与其电性相反的电极移动的现象称为电泳。是根据蛋白质的电荷不同即酸碱性质不同分离蛋白质混合物的方法。1、电泳:在外电场的作用下,带点颗粒将向着与其电性相反的电极移动,这种现象称为电泳。电泳技术可用于氨基酸、肽、蛋白质和核苷酸等生物分子的分析分离和制备。区带电泳是由于在支持物上电泳蛋白质混合物被分离为若干区带。电泳前用缓冲液浸润薄膜或滤纸等支持物或用缓冲液直接配置成凝胶,将待分离的蛋白质样品加在它的一端或中央,支持物的两端与电极连接,通电电泳。电泳完毕,各个组分分布在不同的区域,用显色剂(蛋白质可用考马斯亮蓝或氨基黑等染色)显色后可以显示出各个组分。氨基酸混合物特别是寡聚核苷酸混合物一次电泳往往不能完全分开。这种情况可以将第一次电泳分开的斑点通过支持介质间的接触印迹转移到第二个支持介质上,旋转90°,进行第二次电泳。这种方法称为双向电泳。2、聚丙烯酰胺凝胶电泳:以聚丙烯酰胺凝胶为支持物,一般制成凝胶柱或凝胶板,凝胶是由相连的两部分组成(小的部分是浓缩胶,大的部分为分离胶),这两部分凝胶的浓度、缓冲液组分和离子强度、ph以及电场强度都是不同的,即不连续性。电泳时样品首先在不连续的两相间积聚浓缩而成很薄的起始区带,然后再进行电泳分离。电泳有三种物理效应:1、样品的浓度效应;2、凝胶对被分离分子的筛选效应;3、一般电泳分离的电荷效应。3、毛细管电泳:高效毛细管电泳、毛细管区带电泳、自由溶液毛细管电泳、毛细管电泳,可分离氨基酸、肽、蛋白质、dna片段和核酸以及多种小分子,也可用于手性化合物的分离。毛细管减少了由于热效应产生的许多问题,可以提高热散失,有助于消除由于热引起的扩散增加而造成的对流和区带变宽,因此管中不需要加入稳定介质即可进行自由流动电泳。电泳迁移引起溶液中荷电分子向相反电荷的电极移动,虽然被分析样品因电泳迁移而分离,然而电渗作用使溶液向负极流动,而且电渗电流很强,其速度一般比样品的电泳速率答,因此所有的正、负离子和中性分子都被推向负极。对荷正电分子来说,电泳迁移和电渗流效果是一致的,而且移动最快,最先达到负极。随着被分离的分子接近负极,它们都将通过紫外检测器并把信号传递给记录仪。所得结果是被分离组分的紫外吸收对时间的峰谱。4、等点聚焦(ief)分离蛋白质混合物是在具有ph梯度的介质(如浓蔗糖溶液)中进行。在外电场作用下各种蛋白质将移向并聚焦在等于其等电点的梯度处,并形成一个很窄的区带。ph梯度制作一般利用两性电解质,它是脂肪族多胺和多羧类的同系物,它们具有相近但不相同的解离常数和等电点。在外电场作用下,自然形成ph梯度。5、层析聚焦:根据蛋白质的等电点差异分离蛋白质混合物的柱层析方法。原理:当用特种缓冲液滴洗填充在柱中的特种多缓冲交换剂时,就会在层析柱中自上而下自动的建立起连续的ph梯度;同时加在柱上端的蛋白质样品也随多缓冲液的展开按各自的等电点聚焦在相应的ph区段。并在展开过程中随ph梯度下移,蛋白质混合物的各组分先后从柱中流出,达到分离纯化的目的。

SDS_PAGE 凝胶电泳分离的是什么物质?是核酸还是蛋白质?

蛋白质,根据蛋白质分子量大小的不同分离蛋白质。

概述SDS-PAGE法测蛋白质相对分子质量的原理。

【答案】:(1)聚丙烯酰胺凝胶是一种凝胶介质,蛋白质在其中的电泳速度决定于蛋白质分子的大小、形状和所带电荷数量。(2)十二烷基硫酸钠(SDS)可与蛋白质大量结合,结合带来两个后果:①由于SDS是阴离子,故使不同的亚基或单体蛋白质都带上大量的负电荷,掩盖了它们自身所带电荷的差异;②使它们的形状都变成杆状。这样,它们的电泳速度只决定于其相对分子质量的大小。(3)蛋白质分子在SDS-PAGE凝胶中的移动距离与指示剂移动距离的比值称相对迁移率,相对迁移率与蛋白质相对分子质量的对数呈线性关系。因此,将含有几种已知相对分子质量的标准蛋白质混合溶液以及待测蛋白溶液分别点在不同的点样孔中,进行SDS-PAGE;然后以标准蛋白质相对分子质量的对数为纵坐标,以相对应的相对迁移率为横坐标,绘制标准曲线;再根据待测蛋白的相对迁移率,即可计算出待测蛋白的相对分子质量。

次氯酸钠、高锰酸钾和酒精应该都能使蛋白质变性,但是它们各自的原理是什么?

次氯酸钠、高锰酸钾氧化性使氮白质变性、酒精是蛋白质与有机物变性

关于安利纽崔莱蛋白质粉的真伪 高人赐教

问问专家

CTE能在人死前被诊断出来吗?这种蛋白质可能是关键

2011年在这里展示的新英格兰爱国者队球员亚伦·埃尔南德斯在2017年去世后被诊断患有慢性创伤性脑病。Jim Rogash/Getty Images) 慢性创伤性脑病(CTE)——一种被认为与反复的头部外伤有关的退行性脑疾病——目前只能在死亡后通过对大脑的尸检进行诊断。 但是在一项新的研究中,研究人员已经确定了一种可能的生物标记物,发现于脑脊液中,可以让医生在人还活着的时候诊断CTE。根据今天(5月8日)发表在《神经病学》杂志上的研究,这种生物标记物是一种叫做tau的蛋白质。先前的研究已经将tau与CTE联系起来,在新的研究中,研究人员发现一半以上的研究参与者的脑脊液中的蛋白质水平升高,这些参与者以前是经历过多次脑震荡的职业运动员。(多发性脑震荡与CTE的风险有关,但由于在人活着的时候无法诊断病情,所以还不清楚运动员是否患有CTE。) “我们乐观地认为,我们正在接近寻找CTE的生物标记物,这将使研究人员能够研究[tau]如何影响大脑功能,”高级研究人员说作者Carmela Tartaglia博士,多伦多大学Tanz神经退行性疾病研究中心副教授。[关于慢性创伤性脑病的5个事实] 患有CTE的人更容易患痴呆症、人格障碍或行为问题,尽管还不完全清楚CTE是如何影响大脑的。 这项新的研究包括22名加拿大男性,都是前职业运动员,平均年龄56岁。他们都经历过多次脑震荡。研究还包括非运动员:12名阿尔茨海默病患者和5名健康人作为对照。 研究人员测试了参与者的脑脊液tau水平,并进行了脑成像扫描和神经心理检查,其中包括测试执行功能。 研究人员发现,22名前运动员中有12名(54%)的tau水平高于正常水平。tau水平升高的运动员的tau水平高于健康人,但低于阿尔茨海默病患者。 更重要的是,tau水平升高的运动员在执行功能测试中得分较低,执行功能测试评估注意力、记忆,以及组织和计划技巧-比tau水平正常的运动员。tau水平升高的个体的平均测试分数为46,而tau水平正常的个体的平均测试分数为62,这些较低的分数可能表明CTE,研究说, “我们确实观察到tau水平升高的受试者在执行功能测试中的表现比那些水平正常的受试者差,”Tataglia告诉《生活科学》反复的脑震荡肯定会使大脑处于危险之中。 此外,大脑扫描显示tau水平升高的个体大脑白质存在差异,Tartaglia补充说。这些变化也可以在CTE患者的尸检中看到。然而,并不是所有经历过多次脑震荡的运动员都能提高tau水平。塔塔格里亚说,还需要进一步的研究来找出原因。”这可能是遗传或环境因素造成的,但肯定还需要更多的研究来确定是什么使某些个体更易受伤害,”她说, 纽约曼哈塞特北岸大学医院神经营养管瘤主任杰米·苏·乌尔曼博士,她同意塔塔格里亚的观点,即发现一种可能的CTE生物标记物是有希望的。然而,她强调需要进行更多的研究,特别是有更多参与者的研究。 新研究的局限性包括样本量小和参与者中缺乏女性。 大多数关于CTE生物标记物的研究都包括一个 *** a“所有的参与者,所以很难得出结论,”乌尔曼告诉现场科学未来的研究还需要包括更广泛的没有经历脑震荡的运动员,以及那些参加不太可能发生脑震荡的运动的人。 大脑有CTE的10件事你不知道关于大脑的10件事我们在2018年学到了关于大脑的10件事 最初发表在《生活科学》上。

臭氧原理的果蔬机能处理肉吗?强氧化剂的臭氧难道不会把蛋白质氧化了?

你好,臭氧虽然有很强的氧化性,但我们控制好浓度和时间,是可以处理肉类的。臭氧能除去肉类中添加进去对人体有害的激素,抗生素,瘦肉精以及其他有害化学物质处理大块的肉,需要15分钟左右,小块的和鱼肉需要10分钟左右,碎肉5分钟左右即可具体操作可以查看相关的说明,大体是这样:准备一个臭氧发生器,不要功率太大的,否则会产生高浓度的臭氧,氧化性太强,对肉有害。小型的即可。准备一些干净的水,不要用自来水,里边加的有漂白粉。将肉放进水中,用软管将臭氧发生器产生的臭氧通入水中;过一段时间,水面就会浮出许多杂物,有些是沉淀在水底的,将它们捞出或者过滤干净,将肉拿出来,用干净的清水冲洗一下,放几分钟,等上面微量的臭氧分解后即可。这时候肉中的有害物质已经被臭氧除去了。

真核细胞在蛋白质翻译起始因子是什么?原核呢

原核生物的起始密码子AUG翻译对应的是甲酰甲硫氨酸,真核生物的起始密码子AUG翻译对应的是甲硫氨酸。  少数细菌(属于原核生物)以GUG(缬氨酸)或UUG为起始密码。  最近研究发现线粒体和叶绿体使用的遗传密码稍有差异,比如线粒体和叶绿体以AUG、AUU、AUA 为起始密码子。  相应的DNA上的起始密码子序列是ATG、ATT、ATA

酒精能用于消毒,主要是它对蛋白质起了什么作用

酒精能用于消毒,主要是它对蛋白质起了变性作用。酒精或所说的医用酒精,包括75%和95%两种浓度,其主要成分是乙醇。酒精的消毒原理如下,酒精的主要成分是乙醇,乙醇能够使蛋白质变性失去活性,从而杀死细菌。75%和95%两种浓度的酒精的用法和作用都不一样,在临床上用得最多的是75%的酒精,主要用于皮肤和体表的消毒,而95%的酒精主要用于医疗设备的消毒。所以在临床上面,消毒细菌的时候是用75%的酒精,当浓度过高的时候,其杀菌效果会减弱。

注射时用乙醇消毒杀菌利用的是蛋白质的

酒精的消毒原理是通过蛋白质变性达到杀菌消毒的效果。首先说说消毒药水的选择。酒精能消毒这个估计已经成为常识。然而酒精能消毒是有前提的,有两点非常重要。一是并不是所有浓度的酒精都能消毒,二是就算是合适浓度的酒精也不适合所有类型的消毒场景。对于第一个酒精浓度的问题,医用消毒酒精选取的浓度是75%的乙醇。这个浓度的酒精消毒效果最好,太高或者太低都不好。所以,不是随便去超市买瓶高度白酒就可以起到消毒作用,同时,也不是浓度越高消毒效果越好。比如医院也有用到95%的酒精,但是这个不是用来消毒人体,可以用来擦拭紫外线灯。扩展资料:体积分数99.5%以上的酒精称为无水酒精。生物学中的用途:叶绿体中的色素能溶在有机溶剂无水乙醇(或丙酮)中,所以用无水乙醇可以提取叶绿体中的色素。95%的酒精用于擦拭紫外线灯。这种酒精在医院常用,而在家庭中则只会将其用于相机镜头的清洁。70%~75%的酒精用于消毒。这是因为,过高浓度的酒精会在细菌表面形成一层保护膜,阻止其进入细菌体内,难以将细菌彻底杀死。若酒精浓度过低,虽可进入细菌,但不能将其体内的蛋白质凝固,同样也不能将细菌彻底杀死。其中75%的酒精消毒效果最好。40%~50%的酒精可预防褥疮。长期卧床患者的背、腰、臀部因长期受压可引发褥疮,如按摩时将少许40%~50%的酒精倒入手中,均匀地按摩患者受压部位,就能达到促进局部血液循环,防止褥疮形成的目的。25%~50%的酒精可用于物理退热。高烧患者可用其擦身,达到降温的目的。因为用酒精擦拭皮肤,能使患者的皮肤血管扩张,增加皮肤的散热能力,酒精蒸发,吸热,使病人体表面温度降低,症状缓解。

信使RMA是怎样翻译成蛋白质的?

它以细胞中的核糖核苷酸为原料,互补配对另外一条链就好像DNA复制以一条链为模板,以脱氧核糖核酸为原料合成另外一条链一样的。

蛋白质、大豆异黄酮多1.3倍!用电锅做出蒸黄豆

【王贞洁编译】黄豆是公认的高营养价值食物,不过,你知道怎么吃黄豆最健康吗?桃园医院新屋分院营养师范纯美曾为文指出直接吃黄豆比吃黄豆制品更好。日本中医药膳师岩田麻奈未更是指出水蒸黄豆比水煮黄豆营养成分更高,蛋白质和大豆异黄酮高1.3倍,大豆寡糖高1.8倍,美味成分来源的麸胺酸也高出近3倍,更有助于防止动脉硬化、平衡女性荷尔蒙和整肠。 蒸黄豆保留完整营养、美味增3倍!更可防止动脉硬化、平衡女性荷尔蒙和整肠 日本中医药膳师岩田麻奈未指出黄豆在水煮的过程,营养素容易流失到水中,而黄豆水蒸则没有这样的疑虑,所以更能保有完整的营养成分。互相比较之下,蒸黄豆的蛋白质和大豆异黄酮比煮黄豆高1.3倍,大豆寡糖高1.8倍,美味成分来源的麸胺酸更是高出近3倍。 蛋白质是制造坚固血管不可或缺的材料,蒸黄豆的高蛋白质更有助于预防血管硬化。大豆异黄酮有助于平衡女性荷尔蒙,减少生理期的不适。大豆寡糖可以让肠道生成好菌,调整肠道的环境。 用电锅或压力锅蒸都很方便,蒸好的黄豆直接吃、拌饭或再做调理都是好选择 日本料理研究家谷岛圣子表示蒸黄豆就是把黄豆洗净后,再用电锅或压力锅蒸就好了。蒸好的黄豆要直接吃,减少饭量与饭拌再一起吃,或是再做调理都很好用,以下就介绍蒸黄豆的做法和一道蒸黄豆料理的做法。【王贞洁编译】黄豆是公认的高营养价值食物,不过,你知道怎么吃黄豆最健康吗?桃园医院新屋分院营养师范纯美曾为文指出直接吃黄豆比吃黄豆制品更好。日本中医药膳师岩田麻奈未更是指出水蒸黄豆比水煮黄豆营养成分更高,蛋白质和大豆异黄酮高1.3倍,大豆寡糖高1.8倍,美味成分来源的麸胺酸也高出近3倍,更有助于防止动脉硬化、平衡女性荷尔蒙和整肠。 蒸黄豆保留完整营养、美味增3倍!更可防止动脉硬化、平衡女性荷尔蒙和整肠 日本中医药膳师岩田麻奈未指出黄豆在水煮的过程,营养素容易流失到水中,而黄豆水蒸则没有这样的疑虑,所以更能保有完整的营养成分。互相比较之下,蒸黄豆的蛋白质和大豆异黄酮比煮黄豆高1.3倍,大豆寡糖高1.8倍,美味成分来源的麸胺酸更是高出近3倍。 蛋白质是制造坚固血管不可或缺的材料,蒸黄豆的高蛋白质更有助于预防血管硬化。大豆异黄酮有助于平衡女性荷尔蒙,减少生理期的不适。大豆寡糖可以让肠道生成好菌,调整肠道的环境。 用电锅或压力锅蒸都很方便,蒸好的黄豆直接吃、拌饭或再做调理都是好选择 日本料理研究家谷岛圣子表示蒸黄豆就是把黄豆洗净后,再用电锅或压力锅蒸就好了。蒸好的黄豆要直接吃,减少饭量与饭拌再一起吃,或是再做调理都很好用,以下就介绍蒸黄豆的做法和一道蒸黄豆料理的做法。 蒸黄豆这样做: 步骤1 先把干燥的黄豆洗净,再用2倍以上的水量浸泡一晚 步骤2 把浸泡好的黄豆放入锅子中,再放入电锅中,在外锅倒2杯水下去蒸。如果太硬就在外锅加水继续蒸,直到黄豆蒸熟就好了 材料:蒸黄豆适量、高丽菜3片 调味料:味噌1.5茶匙、醋1茶匙、糖1茶匙、盐适量 步骤1 把高丽菜拿去汆烫,汆烫到还有脆度的程度就可以了 步骤2 把高丽菜沥乾,除去水分 步骤3 把调味料搅拌均匀,再把调味料跟蒸黄豆、高丽菜拌均匀就好了

超滤和凝胶层析是两种原理不同,用处也不同的蛋白质制备方法吗

严格的说,超滤不能单独作为一种蛋白制备方法吧

SDS-PAGE和分子筛过滤层析测定蛋白质分子量在原理和方法上有何不同

电泳法分离蛋白质是根据蛋白质的什么原理:一般是通过生化方法吧蛋白提取出来,蛋白质带有电荷么,是将混合样品中的蛋白质,其原理是第一向基于蛋白质PI不同用等电聚焦,电泳时的正极与负极都会发生电解反应,向着与其电性相反的电极移动的现象称为电泳。是根据蛋白质的电荷不同即酸碱性质不同分离蛋白质混合物的方法。1、电泳:在外电场的作用下,带点颗粒将向着与其电性相反的电极移动,这种现象称为电泳。电泳技术可用于氨基酸、肽、蛋白质和核苷酸等生物分子的分析分离和制备。区带电泳是由于在支持物上电泳蛋白质混合物被分离为若干区带。电泳前用缓冲液浸润薄膜或滤纸等支持物或用缓冲液直接配置成凝胶,将待分离的蛋白质样品加在它的一端或中央,支持物的两端与电极连接,通电电泳。电泳完毕,各个组分分布在不同的区域,用显色剂(蛋白质可用考马斯亮蓝或氨基黑等染色)显色后可以显示出各个组分。氨基酸混合物特别是寡聚核苷酸混合物一次电泳往往不能完全分开。这种情况可以将第一次电泳分开的斑点通过支持介质间的接触印迹转移到第二个支持介质上,旋转90°,进行第二次电泳。这种方法称为双向电泳。2、聚丙烯酰胺凝胶电泳:以聚丙烯酰胺凝胶为支持物,一般制成凝胶柱或凝胶板,凝胶是由相连的两部分组成(小的部分是浓缩胶,大的部分为分离胶),这两部分凝胶的浓度、缓冲液组分和离子强度、pH以及电场强度都是不同的,即不连续性。电泳时样品首先在不连续的两相间积聚浓缩而成很薄的起始区带,然后再进行电泳分离。电泳有三种物理效应:1、样品的浓度效应;2、凝胶对被分离分子的筛选效应;3、一般电泳分离的电荷效应。3、毛细管电泳:高效毛细管电泳、毛细管区带电泳、自由溶液毛细管电泳、毛细管电泳,可分离氨基酸、肽、蛋白质、DNA片段和核酸以及多种小分子,也可用于手性化合物的分离。毛细管减少了由于热效应产生的许多问题,可以提高热散失,有助于消除由于热引起的扩散增加而造成的对流和区带变宽,因此管中不需要加入稳定介质即可进行自由流动电泳。电泳迁移引起溶液中荷电分子向相反电荷的电极移动,虽然被分析样品因电泳迁移而分离,然而电渗作用使溶液向负极流动,而且电渗电流很强,其速度一般比样品的电泳速率答,因此所有的正、负离子和中性分子都被推向负极。对荷正电分子来说,电泳迁移和电渗流效果是一致的,而且移动最快,最先达到负极。随着被分离的分子接近负极,它们都将通过紫外检测器并把信号传递给记录仪。所得结果是被分离组分的紫外吸收对时间的峰谱。4、等点聚焦(IEF)分离蛋白质混合物是在具有pH梯度的介质(如浓蔗糖溶液)中进行。在外电场作用下各种蛋白质将移向并聚焦在等于其等电点的梯度处,并形成一个很窄的区带。pH梯度制作一般利用两性电解质,它是脂肪族多胺和多羧类的同系物,它们具有相近但不相同的解离常数和等电点。在外电场作用下,自然形成pH梯度。5、层析聚焦:根据蛋白质的等电点差异分离蛋白质混合物的柱层析方法。原理:当用特种缓冲液滴洗填充在柱中的特种多缓冲交换剂时,就会在层析柱中自上而下自动的建立起连续的pH梯度;同时加在柱上端的蛋白质样品也随多缓冲液的按各自的等电点聚焦在相应的pH区段。并在过程中随pH梯度下移,蛋白质混合物的各组分先后从柱中流出,达到分离纯化的目的。

日立7600生化分析仪蛋白质检验原理

Na 电极流路,测量参 1.1 D 模块测量方法 比电极电动势。SIP 会首先将参比电极液吸往参比电极液 触摸开始键,仪器复位并清洗反应杯,反应盘 1 周期 流路,接着通过另一条流路吸取内部标准液。样本针吸取 转半圈,反应杯转到清洗喷嘴时会进行水空白测量并排水。 样品后分别注入稀释槽中,并在稀释液添加后充分混合 [4]。 在加样位置处,同时将 4 个项目样品注入,反应杯会移动 SIP 吸取稀释样品并测量电动势。然后,真空吸嘴会吸取多 至添加第 1 试剂的位置,在下一个周期移动至相应位置之 余的稀释剂,稀释槽中加入内部标准液,对稀释槽进行清 前,此时横穿光路会对第 1 点吸光度进行测量

高一生物学习“检测生物组织中的糖类、脂肪和蛋白质”总结三个实验所用的试剂及用量和实验现象、原理

nbjiuyf, fvbn

蛋白质检验实验步骤

用双缩脲试剂检验,要取蛋白质在试管,滴加双缩脲试剂出现紫色是蛋白质

结合还原糖蛋白质的检测实验从成分操作步骤和所需条件角度,分析斐林试剂与双缩脲试剂的不同点

检测还原糖:斐林试剂是新制氢氧化铜,先把硫酸铜和氢氧化铜配置成新制氢氧化铜,再滴加到还原糖溶液中,热水浴或者加热条件,生成红黄色沉淀。检测蛋白质:蛋白质溶液中先滴加氢氧化铜,提供碱性环境,摇匀,再滴加硫酸铜,摇匀,出现紫色

高中生物实验之还原糖、脂肪和蛋白质的检测

高中生物的学习必然离不开实验,高中生物实验不仅研究一切的生命现象和生命活动规律,它还与生命轨迹周围的环境有着千丝万缕的关系。那么高中生物实验之还原糖、脂肪和蛋白质应该如何检测呢?下面我就分享一些高中生物实验之还原糖、脂肪和蛋白质的检测方法,希望对同学们有帮助。 高中生物实验之还原糖、脂肪和蛋白的检测原理 1.还原糖用斐林试剂或者班氏试剂,这两种试剂都是 浅蓝色的,加入还原糖出现砖红色沉淀 2.脂肪用苏丹红,可以发现被染成橘红色 3.蛋白质有肽键,也就是有双缩脲结构,用双缩脲试剂,变成紫红色 高中生物实验之还原糖的检测 1.还原糖定义:还原糖是指具有还原性的糖类。在糖类中,分子中含有游离醛基或羰基的单糖和含有游离醛基的二糖都具有还原性。还原性糖包括葡萄糖、果糖、半乳糖、乳糖、麦芽糖等。 2.高中生物实验之还原糖的检测方法 ①向试管内注入2mL待测组织药液 ②向试管内注入1mL斐林试剂(甲液和乙液等量混合均匀后再注入) ③将试管放入盛有50~65℃温水的大烧杯中加热约2min ④观察试管中出现的颜色变化 高中生物实验之脂肪的检测 1.脂肪定义:存在于人体和动物的皮下组织及植物体中,是生物体的组成部分和储能物质。 2.高中生物实验之脂肪的检测方法 ①制作切片(切片越薄越好)将最薄的花生切片放在载玻片中央 ②染色(滴苏丹Ⅲ染液2~3滴切片上→2~3min后吸去染液→滴体积分数50%的酒精洗去浮色→吸去多余的酒精) ③制作装片(滴1~2滴清水于材料切片上→盖上盖玻片) ④镜检鉴定(显微镜对光→低倍镜观察→高倍镜观察染成橘黄色的脂肪颗粒) 高中生物实验之蛋白质的检测 1.蛋白质定义:蛋白质是组成人体一切细胞、组织的重要成分。蛋白质是生命的物质基础,是有机大分子,是构成细胞的基本有机物,是生命活动的主要承担者,氨基酸是蛋白质的基本组成单位。 2.高中生物实验之蛋白质的检测方法 ①试管中加样液2mL ②加双缩脲试剂0.1g/mL的NaOH溶液1mL,摇匀 ③加双缩尿试剂0.01g/mL的CuSO4溶液4滴,摇匀 ④观察颜色变化(紫色)

如何用双缩脲试剂鉴别蛋白质和核酸

双缩脲试剂由NaOH溶液(0.1g/mL)和CuSO4溶液(0.01g/mL)配制而成,配制比例为5:1.但是双缩脲试剂不用现配现用,这是与斐林试剂不同的地方之一. 蛋白质在双缩脲试剂作用下会形成紫红色沉淀.

高中生物必修一检测蛋白质的实验

①向试管内注入2ml蛋清稀释液②先向试管内注入2ml双缩脲试剂A,摇匀③在向试管内注入4或5滴双缩脲试剂B,摇匀④观察试管中出现的颜色变化:溶液有紫色复合物(复合物是指由两种或两种以上不同物质所形成的结合体,当复合物表现与其中各单一组分所具有的性质迥异的化学性质)出现※注意事项:在蛋白质的检测实验中,最好选用富含蛋白质的生物组织,植物材料常用的是大豆,动物材料常用的是鸡蛋蛋清,且所选材料应是无色或白色,以免影响实验结果的观察。双缩脲试剂有0.1g/mlNaOH溶液和0.01g/mlCuSO4溶液组成,使用时先加2ml0.1g/mlNaOH溶液,然后滴加0.01g/mlCuSO4溶液4或5滴。【先加A后加B,B不能过量(过量会导致溶液成蓝色,而掩盖实验生成的紫色)】蛋白质鉴定不需要加热;若材料用的是鸡蛋清,必须充分进行稀释,否则反应后的产物会粘试管壁上,使反应不彻底。

蛋白质与双缩脲试剂发生作用,产生什么反应?

脱水缩合反应

怎样检测生物组织中的蛋白质

一,实验原理 (1)鉴定实验设计的理念: 某些化学试剂 + 生物组织中有关有机化合物 产生特定的颜色反应. (2)具体原理: 蛋白质 + 双缩脲试剂→紫色反应.二,目标要求 初步掌握鉴定生物组织中蛋白质的基本方法三,实验材料蛋白质的鉴定实验:可用浸泡1d~2d的黄豆种子(或用豆浆,或用鸡蛋蛋白). 具体原理蛋白质 + 双缩脲试剂→紫色反应.(要先加A液NaOH 溶液再加B液CuSO4 溶液) 四,基本方法选材:卵清稀释液或黄豆(浸泡1-2d) 豆浆 滤液 结论:蛋白质与双缩脲试剂发生紫色反应. 2,实验成功的要点: ①蛋白质的鉴定实验:可用浸泡1d~2d的黄豆种子(或用豆浆,或用鸡蛋蛋白稀释液). ②双缩脲试剂的使用,一定要先加入A液(即0.1 g/ml的 NaOH 溶液),再加入双缩脲试剂B液(即0.01 g/ml的 CuSO4 溶液). ③还可设计一只加底物的试管,不加双缩脲试剂,进行空白对照,说明颜色反应的引起是蛋白质的存在与双缩脲试剂发生反应,而不是空气的氧化引起.

为什么双缩脲反应能检测蛋白质的水解程度?

具有两个或两个以上肽键的化合物皆可与双缩脲试剂产生紫色反应。蛋白质的肽键在碱性溶液中能与cu2+络合成紫红色的化合物。颜色深浅与蛋白质浓度成正比。双缩脲(nh2conhconh2)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。双缩脲试剂本是用来检测双缩脲,因蛋白质中也有-conh-基也可用于检验蛋白质,与蛋白质接触后的颜色呈紫色。

为什么双缩脲试剂,尿素,蛋白质有肽健?

能脱水缩合的不止氨基酸,核苷酸也脱水缩合形成核苷酸长链

为什么双缩脲试剂定性检测蛋白质,而不能 定量检测蛋白质

因为双缩脲试剂与蛋白质发生的颜色反应,不能根据颜色的深浅来定量检测蛋白质的含量!只能通过颜色反应,来检测到蛋白质的存在!

怎样用双缩脲法测定蛋白质?

(一)实验原理双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。(二)试剂与器材1.试剂:(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(BSA)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用BSA浓度1mg/ml的A280为0.66来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用H2O或0.9%NaCl配制,酪蛋白用0.05NNaOH配制。(2)双缩脲试剂:称以1.50克硫酸铜(CuSO4&8226;5H2O)和6.0克酒石酸钾钠(KNaC4H4O6&8226;4H2O),用500毫升水溶解,在搅拌下加入300毫升10%NaOH溶液,用水稀释到1升,贮存于塑料瓶中(或内壁涂以石蜡的瓶中)。此试剂可长期保存。若贮存瓶中有黑色沉淀出现,则需要重新配制。2.器材:可见光分光光度计、大试管15支、旋涡混合器等。(三)操作方法1.标准曲线的测定:取12支试管分两组,分别加入0,0.2,0.4,0.6,0.8,1.0毫升的标准蛋白质溶液,用水补足到1毫升,然后加入4毫升双缩脲试剂。充分摇匀后,在室温(20~25℃)下放置30分钟,于540nm处进行比色测定。用未加蛋白质溶液的第一支试管作为空白对照液。取两组测定的平均值,以蛋白质的含量为横座标,光吸收值为纵座标绘制标准曲线。2、样品的测定:取2~3个试管,用上述同样的方法,测定未知样品的蛋白质浓度。注意样品浓度不要超过10mg/ml。

高中生物 斐林和双缩脲检测还原糖和蛋白质,斐林和还原糖成分一样,浓度不一样,反应原理是什么?

斐林试剂原理是新制氢氧化铜在强碱环境下与还原糖中的醛基发生反应产生羧酸盐,水和氧化亚铜(红色)双缩脲试剂与蛋白质中的肽键发生紫色反应(所以只要含肽键就可以和双缩脲产生紫色反应)
 首页 上一页  1 2 3 4 5 6 7 8  下一页  尾页